Подпишись и читай
самые интересные
статьи первым!

Норматив потребления тепловой энергии на отопление: как рассчитывается плата за тепло? Как рассчитать оплату за отопление по своей квартире? Рассчет стоимость отопления по нормативам

При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.

Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.

Расчет мощности радиаторов отопления может осуществляться тремя способами:

Стандартный расчет радиаторов отопления

Согласно строительным нормами и другими правилами необходимо затрачивать 100Вт мощности вашего радиатора на 1метр квадратный жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:

С*100/Р=К, где

К- мощность одной секции вашей радиаторной батареи, согласно заявленной в ее характеристике;

С- площадь помещения. Она равна произведению длины комнаты на ее ширину.

К примеру, комната имеет 4 метра в длину и 3.5 в ширину. В таком случае ее площадь равна:4*3.5=14 метров квадратных.

Мощность, выбранной вами одной секции батареи заявлена производителем в 160 Вт. Получаем:

14*100/160=8.75. полученную цифру необходимо округлить и получается что для такого помещения потребуется 9 секций радиатора отопления. Если же это угловая комната, то 9*1.2=10.8, округляется до 11. А если ваша система теплоснабжения недостаточно эффективна, то еще раз добавляем 20 процентов от первоначального числа: 9*20/100=1.8 округляется до 2.

Итого: 11+2=13. Для угловой комнаты площадью 14 метров квадратных, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.

Примерный расчет - сколько секций батареи на квадратный метр

Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.

Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:

14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.

Объемный или для нестандартных помещений

Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:

К=О*41, где:

К- необходимое количество секций радиатора,

О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.

Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:

3.0*4.0*3.5=42 метра кубических.

Расчитывается общая потребность в тепловой энергии данной комнаты:

42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.

Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.

Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.

aquagroup.ru

Расчет количества секций радиаторов отопления – для чего это нужно знать

На первый взгляд рассчитать, сколько секций радиатора установить в том или ином помещении – просто. Чем больше комната – тем из большего количества секций должен состоять радиатор. Но на практике то, насколько тепло будет в том или ином помещении зависит от более чем десятка факторов. Учитывая их, рассчитать нужное количество тепла от радиаторов, можно намного точнее.

Общие сведения

Теплоотдача одной секции радиатора указана в технических характеристиках изделий от любого производителя. Количество радиаторов в помещении обычно соответствует количеству окон. Под окнами чаще всего и располагаются радиаторы. Их габариты зависят от площади свободной стены между окном и полом. Нужно учитывать, что от подоконника радиатор должен быть опущен не менее, чем на 10 см. А между полом и нижней линией радиатора расстояние должно быть не меньше 6 см. Эти параметры определяют высоту прибора.

Теплоотдача одной секции чугунного радиатора – 140 ватт, более современных металлических – от 170 и выше.

Можно производить расчет количества секций радиаторов отопления,выходя из площади помещения или же его объема.

По нормам считается, что на обогрев одного квадратного метра помещения нужно 100 ватт тепловой энергии. Если же исходить из объема, то тогда количество тепла на 1 кубический метр будет составлять не менее 41 ватта.

Но ни один из этих способов не будет точным если не учитывать особенностей того или иного помещения, количества и размер окон, материал стен, и многое другое. Поэтому рассчитывая секции радиатора по стандартной формуле, будем добавлять коэффициенты, созданные тем или иным условием.

Площадь помещения – расчет количества секций радиаторов отопления

Такой расчет обычно применяется к помещениям, расположенным в стандартных панельных жилых домах с высотой потолка до 2,6 метра.

Площадь комнаты множится на 100 (количество тепла для 1м2) и делится на указанную производителем теплоотдачу одной секции радиатора. Например: площадь комнаты 22 м2, теплоотдача одной секции радиатора – 170 ватт.

22Х100/170=12,9

Для этой комнаты нужно 13 секций радиатора.

Если же одна секция радиатора будет иметь 190 ватт теплоотдачи, то получим 22Х100/180=11,57 , то есть можно ограничиться 12 секциями.

К расчетам нужно добавить 20% если комната имеет балкон или находится в торце дома. Батарея, установленная в нише, еще на 15% снизит теплоотдачу. Но в кухне будет на 10-15% теплее.

Производим расчеты по объему помещения

Для панельного дома со стандартной высотой потолков, как уже указывалось выше, расчет тепла производится из потребности 41 ватт на 1м3. Но если дом новый, кирпичный, в нем установлены стеклопакеты, а наружные стены утеплены, то нужно уже 34 ватт на 1м3.

Формула расчета количества секций радиатора выглядит так: объем (площадь, умноженная на высоту потолка) умножается на 41 или 34 (в зависимости от типа дома) и делится на теплоотдачу одной секции радиатора, указанного в паспорте производителя.

Например:

Площадь комнаты 18 м2, высота потолка 2, 6 м. Дом – типичная панельная постройка. Теплоотдача одной секции радиатора – 170 ватт.

18Х2,6Х41/170=11,2. Итак, нам нужно 11 секций радиатора. Это при условии, что комната не угловая и в ней нет балкона, в противном случае лучше установить 12 секций.

Посчитаем максимально точно

А вот формула, по которой максимально точно можно сделать расчет количества секций радиатора:

Площадь помещения умноженная на 100 ватт и на коэффициенты q1, q2, q3, q4, q5, q6, q7 и поделенная на теплоотдачу одной секции радиатора.

Подробнее об этих коэффициентах:

q1 – тип остекления: при тройном стеклопакете коэффициент будет 0,85, при двойном стеклопакете - 1 и при обычном остеклении – 1,27.

q2 – теплоизоляция стен:

  • современная теплоизоляция – 0,85;
  • кладка в 2 кирпича с утеплителем – 1;
  • неутепленные стены - 1,27.

q3 – соотношение площадей окон и пола:

  • 10% - 0,8;
  • 30% - 1;
  • 50% - 1,2.

q4 - минимальная наружная температура:

  • -10 градусов – 0,7;
  • -20 градусов – 1,1;
  • -35 градусов – 1,5.

q5 – количество наружных стен:

q6 – тип помещения, которое находится выше расчетного:

  • обогреваемое - 0,8;
  • чердачное обогреваемое - 0,9;
  • чердачное необогреваемое – 1.

q7 – высота потолка:

  • 2,5 – 1;
  • 3 – 1,05;
  • 3,5 – 1,1.

Если будут учтены все вышеперечисленные коэффициенты, посчитать количество секций радиатора в помещении можно будет максимально точно.

semidelov.ru

Расчет норматива на потребление тепла

Уважаемый Игорь Викторович!

Я запрашивал у ваших специалистов данные по определению нормативов на потребление тепла. Ответ был получен. Но также связался с МЭИ, где также дали ссылку на расчеты. Привожу её:

Борисов Константин Борисович.

Московский Энергетический Институт (Технический Университет)

Для расчета норматива потребления теплоты на отопление необходимо использовать следующий документ:

Постановление № 306 «Правила установления и определения нормативов потребления коммунальных услуг» (формула 6 – «Формула расчета норматива отопления»; таблица 7 – «Значение нормируемого удельного расхода тепловой энергии на отопление многоквартирного дома или жилого дома»).

Для определения оплаты за отопление для жилого помещения (квартиры) необходимо использовать следующий документ:

Постановление № 307 «Правила предоставления коммунальных услуг гражданам» (Приложение № 2 –«Расчет размера платы за коммунальные услуги», формула 1).

В принципе, сам расчет норматива потребления теплоты на отопление квартиры и определения отплаты за отопление не сложен.

Если хотите, давайте попробуем примерно (грубо) прикинуть основные цифры:

1) Определяется максимальная часовая отопительная тепловая нагрузка Вашей квартиры:

Qмакс = Qуд*Sкв = 74*74 = 5476 ккал/ч

Qуд = 74 ккал/ч - нормируемый удельный расход тепловой энергии на отопление 1 кв. м многоквартирного дома.

Значение Qуд принято по таблице 1 для зданий до 1999 года постройки, высотой (этажностью) 5-9 этажей при температуре наружного воздуха Тнро=-32 С (для города К).

Sкв= 74 кв. м – общая площадь помещений квартиры.

2) Вычисляется количество тепловой энергии, необходимое для отопления Вашей квартиры в течение года:

Qср = Qмакс×[(Тв-Тср.о)/(Тв-Тнро)]×Nо×24 = 5476×[(20-(-5,2))/(20-(-32))]×215*24=13 693 369 ккал = 13,693 Гкал

Тв= 20 С – нормативное значение температуры внутреннего воздуха в жилых помещениях (квартирах) здания;

Тср.о = -5,2 С - температура наружного воздуха, средняя за отопительный период (для города К);

Nо = 215 суток - продолжительность отопительного периода (для города К).

3) Рассчитывается норматив на отопление 1 кв. метра:

Норматив_отопления = Qср / (12×Sкв) = 13,693/(12×74) = 0,0154 Гкал/кв.м

4) Определяется плата за отопление квартиры по нормативу:

Ро = Sкв × Норматив_отопления × Тариф _тепло = 74 × 0,0154 × 1223,31 = 1394 руб

Данные взяты по г. Казань.

Следуя этому расчету и применительно конкретно к дому № 55 в п.Васьково,с введением параметров данного строения, получаем:

Архангельск

177 - 8 253 -4.4 273 -3.4

12124,2 × (20-(-8) / 20-(-45) × 273 × 24 = 14,622…./ (12= 72,6)=0.0168

0,0168-именно такой норматив получаем при расчете, причем учтены именно самые суровые климатические условия: температура в -45, длина отопительного периода в 273 дня.

Я прекрасно понимаю, что депутатов, не являющимися специалистами в области теплоснабжения, можно попросить ввести норматив 0,0263.

Но приводятся расчеты, в которых указывается, что норматив в 0,0387 единственно верный, и это вызывает очень большие сомнения.

Поэтому убедительно прошу пересчитать нормативы на теплоснабжение жилых домов №№ 54 и 55 в п. Васьково до соответствующих величин в 0,0168, т. к. в ближайшее время установка теплосчетчиков в это их жилых домах не планируется, а платить по 5300 рублей за теплоснабжение весьма накладно.

С уважением, Алексей Вениаминович Попов.

www.orlov29.ru

Как рассчитать систему отопления дома?

В процессе разработки проекта отопительной системы одним из ключевых моментов является тепловая мощность батарей. Это нужно для того, чтобы обеспечить требуемую санитарными нормами РФ температуру внутри жилого помещения от +22 °С. Но приборы отличаются друг от друга не только материалом изготовления, габаритами, но и количеством выделяемой тепловой энергии на 1 кв. м. Поэтому перед приобретением проводится расчет радиаторов.

С чего начинать

Оптимальный микроклимат в жилом помещении обеспечивается правильно подобранными радиаторами. К каждому изделию производитель прилагает паспорт с техническими характеристиками. В нем указывается мощность радиатора любого вида, исходя из размеров одной секции или блока. Эта информация важна для вычисления габаритов агрегата, их количества с учетом некоторых других факторов.

Из СНиП 41-01-2003 известно, что тепловой поток, поступающий в комнаты и кухни, следует принимать не менее, чем 10 Вт на 1 м2 пола, то есть расчет системы отопления частного дома прост – нужно взять номинальную мощность батареи, прикинуть площадь квартиры и высчитать число радиаторов. Но все гораздо сложнее: она подбирается не по квадратным метрам, а по такому параметру, как термопотери. Причины:

1. Задача отопительной конструкции – компенсировать тепловые потери жилья и поднять температуру внутри до комфортной. Активнее всего тепло уходит через оконные проемы и холодные стены. При этом утепленный по правилам дом без сквозняков требует гораздо меньшей мощности радиаторов.

2. В расчет включаются:

  • высота потолка;
  • регион проживания: средняя уличная температура в Якутии составляет -40 °С, в Москве – -6 °С. Соответственно размеры и мощность радиаторов должны быть разными;
  • система вентиляции;
  • состав и толщина ограждающих конструкций.

Получив заданную величину, приступают к вычислению ключевых параметров.

Как правильно рассчитать мощность и количество секций

Продавцы отопительного оборудования предпочитают ориентироваться на средние показатели, указанные в инструкции к прибору. То есть, если указано, что 1 сегмент алюминиевой батареи может прогреть до 2 кв. м помещения, то дополнительные вычисления не требуются, однако это не так. На испытаниях берутся условия, приближенные к идеальным: температура на входе – не менее +70 или +90 °С, обратки – +55 или +70 °С, внутренняя температура – +20 °С, утепление ограждающих конструкций соответствует СНиПам. В реальности ситуация сильно отличается.

  • Редкие ТЭЦ поддерживают постоянную температуру, соответствующую 90/70 или 70/55.
  • Котлы, применяемые для отопления частного дома более +85 °С не выдают, поэтому пока теплоноситель дойдет до радиатора, температура падает еще на несколько градусов.
  • Наибольшую мощность имеют алюминиевые батареи – до 200 Вт. Но их нельзя использовать в централизованной системе. Биметаллические – в среднем около 150 Вт, чугунные – до 120.

1. Расчет по площади.

В разных источниках можно встретить как сильно упрощенный расчет мощности батареи отопления на квадратный метр, так и очень сложный с включением логарифмических функций. Первый основывается на аксиоме: на 1 м2 пола необходимо 100 Вт тепла. Норматив нужно умножить на площадь комнаты, и получается требуемая интенсивность работы радиатора. Величина делится на мощность 1 секции – искомое число сегментов найдено.

Имеется комната 4 х 5, биметаллические радиаторы Глобал с сегментом на 150 Вт. Мощность = 20 х 100 = 2 000 Вт. Количество секций = 2 000 / 150 = 13,3.

Расчет количества секций биметаллических радиаторов показывает, что для данного примера необходимо 14 узлов. Впечатляющая гармошка разместится под окном. Очевидно, что этот прием весьма условный. Во-первых, не учитываются объем помещения, термопотери через наружные стены и оконные проемы. Во-вторых, норматив «100 на 1» – итог сложного, но устаревшего инженерного теплотехнического расчета для определенного типа конструкции с жесткими параметрами (габариты, толщина и материал перегородок, утепление, кровля и тому подобное). Для большинства жилищ правило не подходит, а результатом его применения станет недостаточный или излишний прогрев (зависит от степени изоляции дома). Чтобы проверить правильность вычислений, возьмем сложные приемы расчета.

2. Расчет по теплопотерям.

Формула расчета включает средние поправочные коэффициенты и выражается следующим образом:

Q = (22 + 0,54Dt)(Sp + Sns + 2So), где:

  • Q – требуемая теплоотдача радиаторов, Вт;
  • Dt – разница между температурой воздуха в помещении и расчетной наружной, град;
  • Sp – площадь пола, м2;
  • Sns – площадь стен снаружи, м2;
  • So – площадь оконных проемов, м2.

Количество секций:

  • X = Q / N
  • где Q – теплопотери помещения;
  • N – мощность 1 сегмента.

Имеется комната 4 х 5 х 2,5 м, оконный проем 1,2 х 1, одна наружная стена, биметаллические радиаторы Глобал с мощностью секции 150 Вт. Коэффициент термопроводности по СНиП – 2,5. Температура воздуха – -10 °С; внутри – +20 °С.

  • Q = (22 + 0,54 х 30) х (20 + 10 + 2,4) = 1237,68 Вт.
  • Количество секций = 1237,68 / 150 = 8,25.

Округляем до целого в сторону увеличения, получаем 9 секций. Можно проверить еще одним вариантом расчета с климатическими коэффициентами.

3. Расчет по теплопотерям комнаты согласно СНиП «Строительная климатология» 23-01-99.

Для начала нужно вычислить уровень термопотерь помещения через наружные и внутренние стены. Отдельно высчитывается этот же показатель для оконных проемов и дверей.

Q = F х kтеплопроводности х (tвн-tнар), где:

  • F – площадь внешних ограждений за минусом оконных проемов, м2;
  • k – берется согласно СНиП «Строительная климатология» 23-01-99, Вт/м2К;
  • tвн – температура внутри помещения, в среднем величина берется от +18 до +22 °С;
  • tнар – температура наружного воздуха, значение берется из того же СНиП или на сайте метеорологической службы города.

Полученные результаты для стен и проемов складываются, и выходит общая сумма теплопотерь.

Монтаж обогрева насчитывает, батареи, трубы, крепежи терморегуляторы, развоздушки, увеличивающие давление насосы, бак для расширения, систему соединения, коллекторы котел. Каждый фактор имеет огромное значение. Исходя из этого соответствие каждой части конструкции нужно планировать правильно. Конструкция обогревания квартиры включает некоторые компоненты. На открытой странице ресурса мы попытаемся помочь подобрать для нужного дома необходимые узлы конструкции.

детская комната - 10,8 м2 .

и кухня - 10,5 м2 .

Примечание:

Детскую комнату устраивают в той комнате, куда не выходят топочные дверцы (отделения).

В детскую комнату должна выходить только сплошная стена печки, во избежание попадания угарного газа в помещение детской комнаты .

На рисунке показан вариант расположения многооборотной отопительной печи (условно печь №1 ), стенки которой выходят в детскую и в гостиную комнаты. А также кухонная печь (условно печь №2 ), стенки которой выходят в спальню и в кухню.

Стены дома выбираем в кирпичном варианте.

Кирпич эффективный (многодырчатый, со щелевидными пустотами) объемной массой 1300 кг/м3 - наиболее подходящий для холодной зимней температуры.

Стены дома выполнены сплошной кладкой на холодном растворе с наружной расшивкой швов и внутренней штукатуркой .

Толщина кладки стен 510 мм .

Пример толщины стен взят здесь.

Полы дома выполнены на лагах, перекрытие чердачное деревянное, окна с двойными рамами.

Допустимая расчетная (зимняя) температура наружного воздуха T = -35°С.

для расчетов также используйте СНиП 23-01-99 «Строительная климатология»

Источник: http://www.energomir.su/raschet

Перед началом отопительного сезона остро встает проблема хорошего и качественного отопления жилища. Тем более если производится ремонт и меняются батареи. Ассортимент отопительного оборудования достаточно богат. Батареи предлагаются разных мощностей и типов исполнения. Поэтому необходимо знать особенности каждого вида, чтобы правильно подобрать количество секций и тип радиатора.

Что такое радиаторы отопления и какой стоит выбрать?

Радиатор представляет собой отопительный прибор , состоящий из отдельных секций, которые соединены между собой трубами. По ним циркулирует теплоноситель, который чаще всего представляет собой простую воду, нагретую до необходимой температуры. В первую очередь радиаторы служат для отопления жилых помещений. Существуют несколько типов радиаторов, и сложно выделить лучший или худший. Каждая разновидность имеет свои преимущества, которые в основном представляет материал, из которого изготовлен отопительный прибор.

  • Чугунные радиаторы. Несмотря на некоторую критику в их адрес и безосновательные утверждения, что чугун обладает более слабой теплопроводностью, нежели другие разновидности - это не совсем так. Современные радиаторы из чугуна обладают высокой тепловой мощностью и компактностью. Кроме этого, им свойственны и другие плюсы:
    • Большая масса является недостатком при транспортировке и доставке, но при этом вес приводит к большей теплоемкости и тепловой инерционности.
    • В случае, если в доме наблюдаются перепады температуры теплоносителя в системе отопления , чугунные радиаторы лучше держат уровень тепла за счет инерционности.
    • Чугун слабо восприимчив к качеству и уровню засорения воды и ее перегреву.
    • Долговечность чугунных батарей превосходит все аналоги. В некоторых домах еще наблюдаются старые батареи советских времен.

Из недостатков чугуна важно знать про следующие:

  • большой вес обеспечивает определенное неудобство при обслуживании и установке батарей, а также требует надежных монтажных крепежей,
  • чугун периодически нуждается в покраске,
  • поскольку внутренние каналы имеют шершавую структуру, на них со временем появляется налет, который приводит к падению теплоотдачи,
  • чугун требует большей температуры для нагрева и в случае слабой подачи или недостаточной температуры разогретой воды батареи хуже отапливают помещение.

Еще одним недостатком, который стоит выделить отдельно - является тенденция разрушения прокладок между секциями. Это проявляется по оценкам специалистов лишь спустя 40 лет эксплуатации, что в свою очередь еще раз подчеркивает одно из преимуществ чугунных радиаторов - их долговечность.

  • Алюминиевые батареи считается оптимальным выбором, поскольку обладают высокой теплопроводностью в сочетании с большей площадью поверхности радиатора за счет выступов и ребер. В качестве их достоинств выделяют следующие:
    • малый вес,
    • простота в монтаже,
    • высокое рабочее давление,
    • небольшие габариты радиатора,
    • высокая степень теплоотдачи.

К недостаткам алюминиевых радиаторов относят их чувствительность к засорению и коррозию металла в воде, особенно в случае, если на батарею воздействуют малые блуждающие токи. Это чревато возрастанием давления, что способно привести к разрыву отопительной батареи.

Чтобы исключить риск, внутреннюю часть батареи покрывают полимерным слоем, способным предохранить алюминий от непосредственного контакта с водой. В том же случае, если батарея не имеет внутреннего слоя - крайне не рекомендуется перекрывать краны с водой в трубах, поскольку это может вызвать разрыв конструкции.

  • Хорошим выбором станет покупка биметаллического радиатора, состоящего из сплавов алюминия и стали. Такие модели обладают всеми достоинствами алюминиевого, при этом недостатки и опасность разрыва устранены. Нужно учитывать, что и их цена соответственно выше.
  • Стальные радиаторы выпускаются разных форм-факторов, что позволит выбрать прибор любой мощности. Они обладают следующими недостаткам:
    • невысокое рабочее давление, как правило, составляющее показатель всего до 7 атм,
    • максимальная температура теплоносителя не должна превышать 100°С,
    • отсутствие защиты от коррозии,
    • слабая тепловая инерционность,
    • чувствительность к перепадам рабочих температур и гидравлическим ударам.

Стальные радиаторы характеризуются большой площадью нагревательной поверхности, что стимулирует движение нагретого воздуха. Эту разновидность радиаторов целесообразнее отнести к конвекторам. Поскольку стальной обогреватель имеет больше недостатков, нежели достоинств - при желании купить радиатор подобного типа стоит вначале обратить внимание на биметаллические конструкции либо же на чугунные батареи.

  • Последняя разновидность - это масляные радиаторы. В отличие от остальных моделей, масляные представляют собой независимые от общей центральной системы отопления приборы и их чаще приобретают в качестве дополнительного мобильного отопительного прибора. Как правило, достигает максимальной отопительной мощности уже через 30 минут после нагрева, и в целом, представляют собой весьма полезное устройство, особенно актуальное в загородных домах .

При выборе радиатора важно обращать внимание именно на их срок службы и условия эксплуатации. Нет необходимости экономить и покупать дешевые модели алюминиевых радиаторов без полимерного покрытия, поскольку они сильно подвержены коррозии. По сути, наиболее предпочтительным вариантом по-прежнему остается чугунный радиатор. Продавцы стремятся навязать покупку именно алюминиевых конструкций, делая упор на то, что чугун устарел - однако это не так. Если сравнить многочисленные отзывы по типам батарей, именно чугунные отопительные батареи по-прежнему остаются самым правильным капиталовложением. Это не означает, что стоит хранить приверженность старым ребристым моделям МС-140 эпохи Страны Советов. На сегодняшний момент на рынке предлагается значительный ассортимент компактных чугунных радиаторов. Начальная цена одной секции чугунной батареи стартует от $7. Для любителей эстетики доступны в продаже радиаторы, представляющие собой целые художественные композиции, но их цена значительно выше.

Необходимые значения для расчета количества радиаторов отопления

Прежде чем приступать к расчету, необходимо знать основные коэффциенты, которые используются при определении требуемой мощности.

Остекление: (к1)

  • тройной энергосберегающий стеклопакет = 0,85
  • двойной энергосберегающий = 1,0
  • простой стеклопакет = 1,3

Теплоизоляция: (к2)

  • бетонная плита со слоем пенополистирола толщиной в 10 см = 0,85
  • кирпичная стена толщиной в два кирпича = 1,0
  • обычная бетонная панель - 1,3

Отношение к площади окон: (к3)

  • 10% = 0,8
  • 20% = 0,9
  • 30% = 1,0
  • 40% = 1,1 и т.д.

Минимальная температура снаружи помещения: (к4)

  • - 10°С = 0,7
  • - 15°С = 0,9
  • - 20°С = 1,1
  • - 25°С = 1,3

Высота потолков помещения: (к5)

  • 2,5 м, что представляет собой типовая квартира = 1,0
  • 3 м = 1,05
  • 3,5м = 1,1
  • 4 м = 1,15

Коэффициент отапливаемого помещения = 0,8 (к6)

Количество стен: (к7)

  • одна стена = 1,1
  • угловая квартира с двумя стенами = 1,2
  • три стены = 1,3
  • отдельный дом с четырьмя стенами = 1,4

Теперь, чтобы определить мощность радиаторов, нужно перемножить показатель мощности на площадь помещения и на коэффициенты по этой формуле: 100 Вт/м2*Sпомещ*к1*к2*к3*к4*к5*к6*к7

Существует много методик расчетов , из которых стоит выбрать более удобную. О них речь пойдет далее.

Сколько нужно радиаторов отопления?

Есть несколько методов того, как рассчитать радиаторы: их количество и мощность. В основе лежит общий принцип усреднения мощности одной секции и учет резерва, который составляет 20%

  • первый способ стандартный, и позволяет произвести расчет по площади. К примеру, согласно строительных нормативов на обогрев одного квадратного метра площади нужно 100 Ватт мощности. Если помещение имеет площадь 20 м², а средняя мощность одной секции 170 Ватт, то расчет станет иметь такой вид:

20*100/170 = 11,76

Полученное значение необходимо округлять в большую сторону, поэтому для обогрева одной комнаты понадобится батарея с 12 секциями радиатора по с мощностью 170 Ватт.

  • примерный метод подсчета даст возможность определить необходимое количество секций, исходя из площади помещения и высоты потолков. В таком случае, если брать за основу показатель обогрева одной секции в 1,8 м² и высоту потолка в 2,5 м, то тогда при таком же размере комнаты расчет 20/1,8 = 11,11 . Округляя этот показатель в большую сторону, получаем 12 секций батареи. Необходимо отметить, что этот метод отличается большей погрешностью, поэтому его использовать не всегда целесообразно.
  • третий метод основан на подсчете объема помещения. К примеру, комната имеет 5 м в длину, 3,5 в ширину, и высоту потолков 2,5 м. Взяв за основу факт, что для обогрева 5 м3 требуется одна секция с тепловой мощностью в 200 Ватт, получаем такую формулу:

(5*3,5*2,5)/5 = 8,75

Вновь округляем в большую сторону и получаем, что для обогрева комнаты нужно 9 секций по 200 Ватт каждая, либо же 11 секций по 170 Ватт.

Важно помнить, что указанные методы имеют погрешность, поэтому лучше устанавливать количество секций батарей на одну больше. Кроме того, строительные нормы предполагают минимальные показатели температуры в помещении. Если необходимо создать жаркий микроклимат, то к полученному числу секций рекомендуют добавить еще не менее пяти.

Расчет требуемой мощности для радиаторов

  • определяется объем комнаты. К примеру, площадь 20 м и высота потолков 2,5 м:

После повышения показателя в большую сторону, получается требуемое значение мощности радиатора в 2100 Ватт. Для условий холодной зимы с температурой воздуха ниже -20°С имеет смысл дополнительно учесть запас мощности, равный 20%. В таком случае требуемая мощность составит 2460 Ватт. оборудование такой тепловой мощности и надлежит искать в магазинах.

Правильно рассчитать радиаторы отопления можно и с помощью второго примера расчета , основанного на учете площади комнаты и коэффициента на количество стен. Для примера берется одна комната площадью 20 м² и одной наружной стеной. В таком случае расчеты имеют подобный вид:

20*100*1,1 = 2200 Ватт . где 100 - это нормативная тепловая мощность. Если брать мощность одной секции радиатора в 170 Ватт, то получается значение 12,94 - то есть, нужно 13 секций по 170 Ватт каждая.

Важно обратить внимание на тот факт, что нередким явлением становится завышение теплоотдачи, поэтому перед покупкой радиатора отопления необходимо изучить технический паспорт, чтобы узнать минимальное значение теплоотдачи.

Как правило, нет необходимости в том, чтобы рассчитать площадь радиатора, вычисляется необходимая мощность или тепловое сопротивление, и затем уже подходящую модель выбирают из предлагаемого продавцами ассортимента. В том случае, если требуется точный расчет, то правильнее обратится к специалистам, поскольку понадобится знание параметров состава стен и их толщины, соотношение площади стен, окон и климатический условий местности.

Зачастую не совсем ясно, как формируется стоимость отопления и почему для жителей, например, соседнего дома она значительно ниже. Однако плата всегда начисляется по утвержденной схеме. Действует определенный норматив потребления отопления, и именно он является основанием для формирования итоговой стоимости. О том, что нужно знать о начислении платы за отопление, мы расскажем в данной статье.

В этой статье вы узнаете:

  • Как коммунальная услуга отопления связана с нормативами потребления отопления.
  • Что такое «норматив потребления отопления».
  • Как рассчитать норматив потребления отопления.
  • Как норматив потребления электроэнергии связан с коммунальной услугой отопления, предоставляемой МКД.

Как коммунальная услуга по отоплению связана с нормативом потребления отопления

Для начала опишем, что входит в понятие коммунальной услуги по отоплению. Далее рассмотрим, что такое норматив потребления, установленный для отопления, и как он формируется.

На основании Правил 354 качество обогрева оценивают с учетом изменения температуры воздуха в помещении. Согласно п. 5 Правил, отопительный сезон начинается тогда, когда среднесуточная температура воздуха опускается ниже 8 °C и такой режим сохраняется на протяжении 5 дней. Основная цель подачи тепла в помещения - нагрев воздуха до комфортной температуры. Как нагрев осуществляется технически?

В нашей стране сегодня часто пользуются системами водяного отопления. Тепловой носитель (обычно вода) нагревается до заданной температуры и циркулирует в системе отопления. Постепенно носитель отдает в помещение тепло. При этом его температура, соответственно, понижается. Тепло от теплоносителя поступает в атмосферу, как правило, благодаря радиаторам отопления.

Существует три варианта подачи тепла:

  • теплопроводность;
  • конвекция;
  • излучение.

Теплопроводностью называют способность более нагретых частей объекта отдавать тепло менее нагретым с помощью хаотически движущихся частиц (молекул, атомов). К примеру, когда отопительный радиатор передает тепло соприкасающемуся с ним предмету.

Конвекцией называют вид теплообмена, при котором передача внутренней энергии осуществляется потоками и струями. При конвекции тепло передается с помощью жидкости или газа, в том числе, воздуха. Газ обтекает определенный предмет с температурой, отличной от его собственной. Когда воздух обтекает горячий радиатор отопления, он нагревается. Когда воздух обтекает объекты с более низкой температурой, то, соответственно, остывает. Нагреваются обтекаемые предметы.

Места общего пользования, где радиаторов отопления нет (например, лестничные площадки в МКД), обогреваются, главным образом, за счет конвекции. То есть теплый воздух из квартир, где работают радиаторы, поступает в подъезды. За счет этого в них создается нормальная температура.

При излучении тепловая энергия передается через визуально проницаемую среду, например, через воздух, прозрачные предметы или вакуум. Электромагнитные волны переносят тепло от более теплого к менее теплому предмету. К примеру, тепло от Солнца на Землю передается именно излучением. Конечно, отопительный радиатор не отдает тепло в таком же объеме, как Солнце. Неподготовленный наблюдатель этого излучения увидеть не может. Но благодаря специальным приборам - тепловизорам - данный процесс отлично просматривается.

Непосредственно носитель тепла при отоплении не расходуется (во всяком случае при нормальном функционировании системы отопления и отсутствии утечек). Он лишь отдает тепло в пространство, создавая в нем комфортную среду. Вода, нагретая в котле или каком-либо другом устройстве, поступает в отопительную систему, циркулирует в ней, отдает тепло и остывает. Далее по обратному трубопроводу она идет назад в нагревательное устройство. За счет того, что нет расхода теплового носителя, пользователи коммунальных услуг не платят за его потребление. Оплачивается лишь тепло, которое теплоноситель отдает в пространство отапливаемых квартир.

Общепризнанной единицей измерения тепловой энергии по Международной системе единиц (СИ) является джоуль (Дж). Помещения МКД потребляют энергию двух видов:

  • тепловую;
  • электрическую.

Как было отмечено выше, энергия измеряется в джоулях (Дж). Но для обозначения электроэнергии используют «киловатт-часы» (кВт⋅час), а тепловой энергии - гигакалории (Гкал).

Калория (кал) в качестве единицы измерения используется в разных сферах при расчетах, к примеру, если нужно определить расход тепловой энергии в жилых домах и квартирах МКД. Калория - внесистемная единица, равная 4,1868 Дж. Именно такое количество тепловой энергии требуется для нагрева 1 грамма воды на 1 °C.

Калорию как единицу измерения сначала стали использовать, чтобы рассчитывать содержание тепла в воде. В сфере жилищно-коммунального хозяйства калорию применяют именно с этой целью. Теплоносителем в водяных отопительных системах, как правило, является вода.

Для измерения теплоэнергии, как и другой энергии, могут использоваться джоули. Но, если рассчитывается тепловая энергия, потребляемая в жилых домах и МКД, применяются калории.

Чтобы нагреть 1 грамм воды на 1 °C, нужна 1 калория. Соответственно, чтобы нагреть 1 тонну воды (1 млн граммов) на 1 °C, требуется 1 млн. ккал, или 1 Мкал (мегакалория). К примеру, чтобы нагреть 1 кубометр воды (1 тонну) до температуры 0-60 °C, необходимо 60 Мкал (мегакалорий), или 0,06 (0,060) гигакалорий (Гкал). То есть, чтобы нагреть 100 кубометров воды до температуры 0-60 °C, нужно 6 Гкал. Отметим, 60 градусов - это предел ГВС для жителей жилых домов и МКД.

В отопительных системах МКД циркулируют большие объемы теплового носителя. Именно поэтому расчеты ведутся именно в Гкал (1 Гкал равняется 1 млрд кал).

Что собой представляет норматив потребления отопления с физической точки зрения

Российское законодательство рассматривает МКД при расчетах потребленной энергии для отопления как единое целое. Многоквартирный дом выступает в роли неделимого технического объекта, потребляя тепловую энергию для отопления всех помещений в нем. В связи с этим при расчетах между ресурсосберегающей организацией и исполнителем коммунальных услуг очень важно, сколько теплоэнергии использовал МКД в целом.

Существуют Правила по установке и определению нормативов потребления коммунальных услуг, утвержденные Постановлением Правительства от 23.05.2006 г. № 306. В соответствии с ними, сначала рассчитывают норматив потребления отопления в году в МКД (п. 19 Приложения 1 к Правилам 306, формула 19).

При вычислении норматива потребления отопления в месяц в качестве расчетного срока применяют год. Показатели в разные месяцы, безусловно, отличаются, а плата по нормативу потребления отопления должна быть или одинаковой в течение всего отопительного сезона, или равномерной в течение календарного года. Все зависит от того, какой способ платы за отопление действует в российском субъекте.

В МКД входят жилые и нежилые помещения, а также общедомовое имущество, принадлежащее всем владельцам объектов в доме на праве общедолевой собственности. Всю тепловую энергию, поступающую в МКД, потребляют именно они. Соответственно, платить за отопление должны собственники. Но возникает вопрос: как должна распределяться стоимость оказанной услуги между всеми абонентами? Есть ли норматив потребления отопления на общедомовые нужды?

Сумма оплаты за отопление распределяется вполне обоснованно. Все зависит от метража каждой квартиры или нежилого помещения (по Правилам 354 и 306).

Как производится расчет нормативов потребления тепловой энергии на отопление

Норматив потребления отопления утверждают уполномоченные органы местной власти. Чаще всего это входит в обязанности энергетических комиссий в регионах.

Тип дома определяет норматив потребления отопления. Действует норматив в течение не менее трех лет и в этот период обычно не меняется. Можно обжаловать решение об установке нормативов потребления отопления в судебном порядке.

Нормативы потребления КУ формируют тремя методами: экспертным, расчетным и методом аналогов. Уполномоченные органы вправе использовать один метод или сочетать несколько.

Если специалисты применяют метод аналогов и экспертный, норматив потребления отопления формируют на основании наблюдения за потреблением тепла в жилых домах и МКД с примерно одинаковыми строительными и техническими характеристиками, количеством жильцов и уровнем благоустройства. Основой здесь становятся показатели коллективных счетчиков.

Расчетным методом пользуются в том случае, если невозможно получить показания счетчиков, или данных коллективных приборов учета недостаточно для применения метода аналогов, или нет сведений для использования экспертного метода.

Каждый регион сам устанавливает норматив потребления тепловой энергии на отопление. При его формировании учитывают технологические потери. При этом расходы коммунальных ресурсов, появившиеся из-за неправильной эксплуатации инженерных коммуникаций и оборудования в жилом доме или МКД, неверного применения правил эксплуатации жилых помещений и содержания общедомового имущества в МКД, не принимают во внимание.

Норматив потребления отопления на кв. м. - это расход теплоэнергии, при котором в помещении поддерживается нормальная температура. Для расчета норматива потребления отопления (Гкал на 1 м2 в месяц) используют формулу:

N = Q/S*12

Q здесь является суммарным расходом теплоэнергии на обогрев помещений в МКД или жилом доме. Q - сумма показаний счетчиков за отопительный сезон (Гкал), S - общий метраж помещений в жилом доме или МКД (м 2).

  • Нормативы комнатной температуры.

Существуют Правила предоставления коммунальных услуг населению, утвержденные постановлением Правительства РФ. Согласно им, температура воздуха в жилых помещениях не должна быть меньше отметки с 18 °C и 20 °C для угловых комнат.

Температурный режим в домах жилого назначения определяет ГОСТ Р 51617-2000 «Жилищно-коммунальные услуги. Общие технические условия», утвержденный постановлением Госстандарта России 158-ст от 19.06.00 года и СанПИН 2.1.2.1002-00.

ГОСТ признает оптимальными следующие температурные режимы для жилых помещений:

  • 20 °C для угловых комнат;
  • 20 °C для построек первого года эксплуатации;
  • 18 °C для жилых комнат;
  • 18 °C для кухонь;
  • 25 °C для ванных комнат;
  • 16 °C для лестничных клеток и вестибюлей.

По СанПИН оптимальными и разрешенными в жилых помещениях признаются следующие температурные нормативы:

Для ГВС также установлен температурный режим, равный 50–70 °C.

Как можно точнее рассчитать норматив потребления отопления

Согласно Правилам, при установке нормативов потребления коммунальных услуг следует использовать метод аналогов и расчетный метод.

Метод аналогов применяют, если есть данные, полученные со счетчиков в домах с похожими техническими характеристиками и конструктивными параметрами, уровнем благоустройства, а также расположенных в аналогичных климатических зонах. Метод аналогов позволяет получить достоверную информацию лишь в отношении потребления энергии и расхода воды, несмотря на то что собственники помещений в МКД по-разному моют посуду, принимают душ и ванну, пользуются освещением и энергопотребляющими приборами. Рассчитывая норматив потребления коммунальной услуги по отоплению, этот метод использовать не получится, во всяком случае, с применением общедомовых счетчиков. Что касается индивидуальных счетчиков, практического опыта в этом вопросе пока нет.

Общедомовой прибор учета на вводе в здание фиксирует объем потребления тепла на отопление. Но это не значит, что данный объем тепловой энергии оптимален для жильцов. Например, в Москве по улице Обручева расположены 8 одинаковых домов серии П-18 – 01/12. В рамках капремонта в них заменили старые окна на более энергоемкие новые, утеплили фасады, установили автоматизированные узлы управления отопительной системой, термостаты на отопительных приборах. При этом в двух зданиях, помимо прочего, установили теплораспределители поквартирного учета тепловой энергии. В отопительный сезон 2010–2011 гг. удельное потребление тепловой энергии в среднем составило 190 кВт·ч/м 2 . При этом в течение предшествующего периода в одном доме показатель равнялся 99 кВт·ч/м 2 . Значительного улучшения показателей можно было достичь, если оптимизировать температурный график подачи теплоэнергии для обогрева.

Чтобы вычислить норматив потребления отопления, рекомендуют использовать только расчетный метод. Но формула 9, предлагаемая Правилами, неверная. Согласно ей, тепловая нагрузка на отопление меняется вместе с наружной температурой:

Q о = q о.max (t вн – t н.сро)/(t вн – t н.ро) · 24 n о · 10 –6 , Гкал/ч

q о.max - норматив потребления тепловой энергии на отопление жилого дома или МКД (ккал/час); t вн - температура обогреваемых объектов в доме, °C; t н.сро - среднесуточная температура наружного воздуха в отопительный сезон, °C; t н.ро - расчетная температура наружного воздуха при проектировании отопления, °C; n о - длительность отопительного сезона при среднесуточной наружной температуре 8 °C и меньше. 24 - часы в сутках, а 10 –6 - коэффициенты перевода из ккал в Гкал.

Если учитывать тепловой баланс жилого помещения, расчетная часовая нагрузка на отопление будет равна:

q о.max = q огр q инф – q быт,

q огр - тепловые потери через наружные ограждения; q инф - тепловые потери на нагрев инфильтрующегося воздуха через наружные ограждения; q быт - бытовые выделения тепла от людей, искусственного освещения, использования бытовых приборов, приготовления пищи, мытья посуды, труб ГВС, установленных внутри квартир, а также поступления тепла с рассеянной радиацией.

Когда повышается или понижается температура на улице, меняются лишь первые две составляющие теплового баланса. Бытовые выделения тепла на протяжении всего отопительного сезона остаются неизменными. Температура наружного воздуха на них не влияет. В связи с этим правильный вариант формулы выглядит так:

Q о = [(q о.max q быт) (t вн – t н.сро)/(t вн –Э t н.ро) – q быт ] · 24 n о ·10 –6 ,

Если бытовые тепловыделения обозначить в долях от расчетной часовой нагрузки на отопление и вынести q о.max за квадратные скобки, формула будет такой:

Q о = q о.max · [(1 q быт /q о.max) · (t вн – t н.сро)/(t вн – t н.ро) – q быт /q о.max ] · 24 n о · 10 –6 .

Бытовые тепловыделения в тепловом балансе остаются постоянными в отношении расчетной часовой нагрузки на отопление для определенного дома. Однако доля тепловых выделений повышается, если увеличивается температура наружного воздуха. Благодаря увеличению температуры снаружи, подача тепла на обогрев помещения может сократиться. Графики температур теплового носителя в подающем и обратном трубопроводах отопительной системы должны сходиться не при t н = t вн = 18…20 °C, как это было при использовании приведенной в Правилах формулы, а при t н = 10…15 °C, в соответствии с иными приведенными формулами.

Отметим, что график качественной регулировки источника, выстроенный без учета увеличивающейся доли бытовых выделений тепла в тепловом балансе дома с повышением температуры наружного воздуха, идет вразрез с нормативами. В связи с этим в каждом жилом доме должны присутствовать автоматизированные узлы управления отопительной системы. Если подсоединение зависимое, движение корректирующих подмешивающих насосов должно вестись не только во время срезки центрального графика регулировки, но и на протяжении почти всего периода при условии, что температура наружного воздуха превышает параметры «А».

Доля бытовых выделений тепла - постоянная величина от расчетной часовой нагрузки на отопительную систему для отдельного дома. Эта доля для другого жилого объекта увеличивается с повышенной тепловой защитой или с использованием утилизации тепла вытяжного воздуха для нагрева приточного. Если предполагается построить дом с аналогичными техническими характеристиками и конструкцией, но в регионе с более прохладным климатом, доля бытовых тепловыделений при проектировании отопления будет меньше. Если же планируется строительство на территории с более высокой расчетной температурой наружного воздуха, доля будет выше.

В связи с этим таблицу 7 Правил, в которой обозначен норматив потребления тепловой энергии на отопление жилого дома и МКД, нельзя назвать правильной. При определении значений не учтены меняющиеся доли бытовых тепловыделений по отношению к расчетной часовой нагрузке на отопление в разных российских регионах. Также не учтено, что в дальнейшем, на основании Постановления Правительства РФ № 18 от 25.01.2011 г., энергоэффективность зданий будет повышаться.

Не будем брать во внимание значения удельного расхода теплоэнергии для обогрева домов, возведенных до 1995 года и после 2000 с различным количеством этажей в регионах с расчетной температурой наружного воздуха для проектирования отопления от -5 градусов до -55 градусов. Выявим эти же значения для построек периода 2011–2016 гг. с учетом требований о повышении их энергоэффективности, а также для зданий, где в это же время проводилась капитальная реконструкция, и сравним их с требованиями 2000 года (на основании Постановления Правительства РФ № 18 от 25 января 2011 г.)

По приказу Минрегионразвития РФ № 262 от 28.05.2010 г. вместе с увеличением энергоэффективности повысились нормируемые сопротивления теплопередаче наружных стен, покрытий и перекрытий к уровню табл. 4 СНиП 23–02–2003, окон с 2011 года до величины R F = 0,8 м 2 ·°C/Вт для местностей с величиной градусо-суток более 4 000 и 0,55 м 2 ·°C/Вт для остальных, а с 2016 года - не менее R F = 1,0 м 2 ·°C/Вт также для районов более 4 000 °C·сут. и 0,8 м 2 ·°C/Вт - для остальных.

Для расчетов за основу возьмем девятиэтажную жилую постройку, возводимую в центральной России. Расчетная температура наружного воздуха там составляет –25 градусов, а величина градусо-суток - 5000. В соответствии с нормами на 2000 год, приведенное сопротивление теплопередаче основных наружных ограждений стен R w = 3,15 м 2 ·°C/Вт, окон R F = 0,54 м 2 ·°C/Вт, расчетный воздухообмен при заселенности 20 м 2 общей площади квартир на человека = 30 м 3 /(ч·чел.), удельная величина бытовых тепловыделений 17 Вт/м 2 метража жилых комнат.

Вот как выглядит теплобаланс дома. Через стены здание теряет 20–23 % тепла, через покрытия, перекрытия - 4–6 %, через окна - 25–28 %, за счет инфильтрации воздуха - 40–50 %. Относительный процент бытовых тепловыделений от расчетных тепловых потерь - 18–20 %. Расчетный расход тепла на обогрев дома по отношению к расчетным теплопотерям в 2000 году будет при решении уравнения теплобаланса: о.max 2000 г. = 0,215 0,05 0,265 0,47 – 0,19 = 0,81. Процент бытовых тепловыделений от расчетного потребления тепла на отопление q быт /q о.max = 0,19·100/0,81 = 23,5 %.

Как изменяются относительные теплопотери через окна и стены здания при повышении их теплозащиты

Чтобы понять, как меняется расчетный расход тепловой энергии на обогрев при повышении сопротивления теплопередаче наружных ограждений, посмотрим на рис. 1. Рисунок показывает, что при повышении сопротивления теплопередаче стен на 15 % с 3,15 до 3,6 м 2 ·°C/Вт относительные теплопотери через стены понижаются с 0,302 до 0,265 единиц или равны 0,265/0,302 = 0,877 от предыдущего значения. При переходе на окна с сопротивлением теплопередаче 0,8 вместо 0,54 м 2 ·°C/Вт потребление тепла сокращается на 0,425/0,63 = 0,675 в сравнении с более ранним показателем.

Если рассматривать снижение теплопотерь через покрытия и перекрытия, как через стены, а относительные потери тепла на нагрев инфильтрационного воздуха, как прежде, уравнение теплобаланса дома постройки с 2011 года будет таким:

Qht.max 2011 г. = (0,215 0,05)·0,877 0,265·0,675 0,47 = 0,232 0,179 0,47 = 0,881.

Относительные расчетные затраты теплоэнергии на обогрев равны Qht.max 2011 г. = 0,881 – 0,19 = 0,691, а норматив потребления отопления на 2011 год сократится по сравнению с 2000 годом: 0,691/0,81 = 0, 853 (уменьшится на 14,7 %, благодаря увеличению сопротивления теплопередаче стен, покрытий, перекрытий на 15 % и окон с 0,54 до 0,8 м 2 ·°C/Вт), а по абсолютной величине при значении в 2000 году q о.max = 50 м 2 ·°C/Вт с пересчетом на ккал/ч: 50·0,853/1,163 = 36,6 ккал/(ч·м 2).

Приведенное сопротивление теплопередаче стен повысится еще на 15 % в 2016 г. в сравнении с 2011 г. При переходе на окна с сопротивлением теплопередаче 1,0 вместо 0,8 м2 ·°C/Вт потери тепла снизятся на 0,34/0,425 = 0,8. Показатель относительных суммарных потерь тепла в 9-этажном доме в 2016 году составит:

Q ht.max 2016 г. = 0,232·0,887 0,179·0,8 0,47 = 0,206 0,143 0,47 = 0,82.

Относительные расчетные потери тепла на отоплениеQ ht.max 2016 г = 0,82 – 0,19 = 0,63. Снижение нормируемого удельного показателя в 2016 году по сравнению с 2000 годом равно 0,63/0,81 = 0,778. Сопротивление теплопередаче стен, покрытий, перекрытий повысилось всего на 30 % и окон до 1,0 м2·°C/Вт. За счет этого потребление тепла на обогрев помещения снизилось на 22,2 %, в том числе с 2016 года - на 22,2–14,7 = 7,5 %), а по абсолютной величине: q о.max = 50·0,778/1,163 = 33,4 ккал/(ч·м 2). Вот как будут соотноситься составляющие теплопотерь в жилом девятиэтажном доме в 2016 году. Через стены, покрытия и перекрытия будет уходить 25 % тепла (0,206·100/0,82), через окна 0,143·100/0,82 = 17 % (в 2000 г. эти параметры были идентичны друг другу - 26,5 %), на нагрев инфильтрующегося воздуха в нормативном количестве: 0,47·100/0,82 = 58 % (в 2000 году - 47 %). Процент бытовых выделений тепла по отношению к расчетным потерям тепла на обогрев составит 0,19·100/0,63 = 30 % (в 2000 году - 23,5 %).

Высчитаем в том же соотношении, как для 2000 года, показатели расхода тепла на отопление домов с разным количеством этажей, но для территорий с иными расчетными температурными параметрами наружного воздуха. Ниже размещена таблица с результатами расчетов, принадлежащая СНиП «Тепловые сети». Благодаря таблице можно определить, какой мощностью обладает источник теплоснабжения и каков диаметр труб, используемых в теплосетях.

Высчитывать норматив индивидуального потребления отопления помещения по данной таблице нельзя. Параметры расчетных потерь не отражают степени оптимизации автоматической регулировки подачи тепловой энергии на отопление.

Удельные показатели расчетного расхода тепла на отопление многоквартирных и жилых домов на 1 м 2 общей площади квартир, q o.max , ккал/(ч·м 2)

Этажность
жилых зданий

Расчетная температура наружного воздуха
для проектирования отопления, t н, °С

Для зданий строительства до 1995 года

1–3 эт. отдельностоящие

2–3 эт. сблокированные

4–6 эт. кирпичные

4–6 эт. панельные

7–10 эт. кирпичные

7–10 эт. панельные

Для зданий строительства после 2000 года

1–3 эт. отдельностоящие

2–3 эт. сблокированные

Для зданий строительства после 2010 года

1–3 эт. отдельностоящие

2–3 эт. сблокированные

Для зданий строительства после 2015 года

1–3 эт. отдельностоящие

2–3 эт. сблокированные

Как рассчитывается норматив потребления отопления нежилых помещений

На основании 20 пункта Правил предоставления коммунальных услуг населению, утвержденных Постановлением Правительства РФ от 23.05.2006 г. №307, если в помещениях нежилого назначения МКД не установлены счетчики на ГВС и ХВС, электро-, теплоэнергию и газ, сумму оплаты за услуги ЖКХ рассчитывают по нормативам, которые установило российское законодательство, а также с учетом количества потребленных ресурсов.

Объемы потребленных коммунальных ресурсов определяют так:

  • для ХВС и ГВС - с применением расчетного метода. За основу берут нормативы потребления водных ресурсов. Если их нет - требования и правила строительных норм;
  • для сточных вод - как общий объем израсходованной горячей и холодной воды;
  • для газа и электроэнергии - с использованием расчетного метода. Схему расчета между собой должны согласовать ресурсоснабжающая организация и лицо, с которым у организации заключен договор. Основанием для расчета является мощность и режим работы потребляющих устройств, установленных на объекте;
  • для отопления - в соответствии с подп. 1 пункта 1 приложения №2 к Правилам [примечание: по нормативу потребления в Гкал/кв.м, т.е. расчет такой же, как для квартир]. Исполнителю при этом раз в год нужно корректировать сумму оплаты за отопление. Порядок корректировки описан в подп. 2 п. 1 приложения №2 к Правилам.

В других ситуациях объемы потребленной теплоэнергии в помещениях нежилого назначения, в том числе нежилых объектах, которые не являются частью МКД и расположены отдельно, рассчитываются по Методике определения потребности в топливе, электроэнергии и воде при производстве и передаче теплоэнергии и теплоносителей в системах коммунального теплоснабжения МКД. Методику утвердил Госстрой РФ от 12.08.2003 г. Для расчетов также применяют Методику определения количества тепловой энергии и теплоносителя в водяных системах коммунального теплоснабжения МДС 41-4.2000, утвержденную приказом Госстроя РФ от 06.05.2000 г. № 105.

Из-за того что законодательные формулировки весьма неоднозначны, то, как вопрос для пользователя коммунальных услуг будет решаться на деле, определяется позицией энергосберегающей организации, исполнителя (Уголовный Кодекс, ТСЖ), доводами участников и судебной практикой.

Как норматив потребления электроэнергии на отопление связан с коммунальной услугой отопления, предоставляемой МКД

До того как был принят новый Жилищный Кодекс РФ, в период с 1999 по 2005 гг. действующее законодательство допускало отключение централизованного отопления в отдельно взятом жилом помещении МКД и обогревание его электричеством. Так как централизованное отопление в домах далеко не всегда функционировало качественно, значительная доля населения, оформив все технические документы, начала использовать электробатареи.

Плата за отопление в МКД начислялась так. Собственники квартир, где функционировало централизованное отопление, платили за услугу в соответствии с нормативом потребления. Граждане, пользовавшиеся поквартирным отоплением, услугу не оплачивали, так как не получали квитанции за нее. Все это соответствовало принципам, отраженным в ст. 7 Жилищного Кодекса РФ - «разумность и справедливость». Однако в 2003–2013 гг. все изменилось (таблица).

Формирование суммы оплаты за отопление в МО Мурманской области

Условия

Временной период

До 2006 г.

Основания

Действовал единый по всей области норматив на отопление

Действовали нормативы на отопление,
утвержденные органами местного самоуправления

Субъектом введены новые нормативы на отопление, с выделением норматива на общее имущество

Отменены нормативы на общее имущество

Действует
постановление Правительства РФ
от 23.05.2006 г. № 307

МКД без общедомового прибора учета, помещение без прибора учета

Р i = S i x Nот x Тт. Корректировка по году новым тарифом

Р i = S i x Nt x Тт. Корректировка по году

Р i = S i x Nобщ x Тт Poдн = Nодн x Sои x S i /Sоб. Корректировка отменена

Р i = S i x Nt x Тт. Корректировка отменена

Р i = S i x Nt x Тт. Корректировка
отменена

МКД оборудован общедомовым прибором учета, помещение без прибора учета

Р i = Vд x S i /Sобщ x Тт.
По факту потребления

Р i = S i x V i x Тт.
По средне-
месячному
с корректиров-кой по году

Р i = Vд x S i /Sд x Тт.
По факту потребления

Р i = Vд x S i /
Sобщ x Тт.
По факту потребления

Р i = S i x V i x Тт.
По средне-
месячному
с корректиров-
кой по году

Сложности с оплатой тепла появились, когда в МКД установили общедомовые счетчики. Сумма оплаты стала складываться из двух составляющих: за обогрев помещения жилого или нежилого назначения и общих площадей в доме.

В итоге, начиная с 2013 года и по сей день, в ряде российских регионов (например, в Кировской и Мурманской областях), где в МКД есть помещения, обогреваемые электричеством, в соответствии с законодательным переводом на данный вид отопления, владельцам этих помещений продолжают выставлять квитанции по оплате услуги централизованного отопления (рис. 1).

Рис. 1. Схема распределения тепловой энергии на отопление дома № 11 по ул. Советской г. Кандалакша (вариант ГЖИ Мурманской области):

  • 59,07 Гкал / 2617 кв. м = 0,02257 Гкал/кв. м.
  • 0,02257 Гкал/кв. м x 1597,7 кв. м = 36,06 Гкал.
  • 0,02257 Гкал/кв. м x 206,5 кв. м = 4,66 Гкал.
  • 4,66 Гкал / 2410,5 кв. м = 0,001933 Гкал/кв. м.
  • 0,001933 Гкал/кв. м x 812,8 кв. м = 1,57 Гкал.
  • 0,001933 Гкал/кв. м x 1597,7 кв. м = 3,09 Гкал.

Вместе с тем власти регионов настаивают, чтобы собственники вновь перешли на централизованное отопление. Но они забывают, что у закона нет обратной силы.

В пользу того, что действия являются правомерными, свидетельствует формула 3 из приложения 2 Правил. В соответствии с ней площади, обогреваемые за счет электричества, не исключаются из схемы расчета за услуги централизованного отопления.

При этом 12.03.2015 г. прошло заседание рабочей группы, посвященное формированию оплаты за централизованное отопление для собственников жилых помещений с электробатареями (рабочую группу поручил создать губернатор Мурманской области). В протоколе заседания значилась рекомендация администрациям всех МО в Мурманской области проинформировать владельцев, что жилые помещения должны быть переведены на централизованное отопление. Однако неясно, как это соотносится с положением об отсутствии обратного действия у закона.

Выходит, что сегодня суть конфликтов между заинтересованными сторонами заключается в следующем:

  • теплоснабжающие предприятия хотят, чтобы собственники платили за неоказанные услуги;
  • собственники жилых объектов не намерены оплачивать неоказанные услуги.

В ряде российских регионов сегодня (к примеру, в Брянской и Архангельской областях, Ставропольском крае) ситуация несколько иная. Формулу 3 приложения 2 Правил используют с учетом определения Верховного Суда РФ от 23.03.2015 г. № АКПИ15-198. При этом в данных регионах вопрос, связанный оплатой отопления, решают на основании ст. 7 Жилищного Кодекса РФ, в том числе главных ее положениях – разумности и справедливости .

Возможности решения проблемы

Основной элемент, подтверждающий, что владелец объекта получает коммунальную услугу по центральному отоплению, - радиаторная батарея. Она является частью централизованного отопления, поскольку присоединена к нему, и поддерживает в жилье необходимую температуру. Помещения многоквартирного дома, обогреваемые при помощи электроэнергии, не оснащены данными элементами. Соответственно, по закону и услуга за отопление отсутствует.

Ниже приведены части МКД, служащие доказательством того, что собственники помещений нежилого и жилого назначения, куда отопление поступает за счет электрообогрева, обязаны оплачивать часть коммунальные услуги:

  • лестничные клетки (общедомовое имущество всех владельцев объектов МКД);
  • стояки отопления, которые проходят через жилые и нежилые площади владельцев, где действует электрообогрев.

Ряд проблем еще предстоит решить. Среди них:

  • Как собственники объектов, где применяется электрообогрев, должны платить за отопление, расходуемое на общедомовое имущество, какой действует норматив потребления отопления на общедомовые нужды.
  • Как оплачивать теплоэнергию, которую излучают стояки отопительной системы, проходящие через объекты с электрическим обогревом.

Экспертный совет системы общественного контроля в сфере ЖКХ Общественной палаты Мурманской области разработал ряд предложений по формированию суммы оплаты за отопление в МКД с жилыми помещениями с электробатареями (рис. 2, 3).

Рис. 2. Схема показывает, как распределяется теплоэнергия на обогрев дома № 11 по улице Советской в Кандалакше (представлена экспертным советом системы общественного контроля в сфере ЖКХ Общественной палаты Мурманской области):

  • 0,1712 Гкал/мес - потери теплоэнергии от подающего и обратного стояков (среднее значение), которые проходят через жилые объекты. Для расчетов использована инструкция Минэнерго России от 30.12.2008 г. № 325.
  • 8 кв. x 0,1712 Гкал = 1,3696 Гкал.
  • 59,07 Гкал - 1,3696 Гкал = 57,70 Гкал.
  • 57,7 Гкал / 1804,2 кв. м = 0,03198 Гкал/кв. м.
  • 0,03198 Гкал/кв. м x 1597,7 кв. м = 51,09 Гкал.
  • 0,03198 Гкал/кв. м x 206,5 кв. м = 6,6 Гкал.
  • 6,6 Гкал / 2410,5 кв. м = 0,00274 Гкал/кв. м.
  • 0,00274 Гкал/кв. м x 812,8 кв. м = 2,227 Гкал.
  • 0,00274 Гкал/кв. м x 1597,7 кв. м = 4,38 Гкал.

Рис. 3. Схема оплаты центрального отопления владельцами объектов, где действует электрообогрев.

В данном случае можно:

  • Использовать норматив потребления отопления на общедомовые нужды (аналог, по ст. 7 Жилищного Кодекса РФ).
  • Устанавливать счетчики теплоэнергии на отопительных стояках общедомового имущества.
  • Применять приборно-расчетный метод объема теплоэнергии, которую излучают отопительные стояки.

В приведенных схемах позиции сторон обоснованы и справедливы:

  • теплоснабжающая организация заинтересована в продаже услуги по отоплению и получении оплаты за нее;
  • собственники помещений хотят получить качественную коммунальную услугу по отоплению и заплатить за нее.

Увы, предложения, которые выдвинул экспертный совет общественного контроля в сфере ЖКХ Общественной палаты Мурманской области, даже не будут рассмотрены. Вместе с тем владельцам объектов, обогреваемых за счет электричества, как и раньше, поступают счета на двойную оплату за услуги отопления. Такую же проблему обнаружили и в Крыму в г. Красноперекопске. Решать ее должно непосредственно Правительство страны.

Любой собственник городской квартиры хотя бы раз удивлялся цифрам в квитанции за отопление. Часто непонятно, по какому принципу для нас начисляется плата за отопление и почему зачастую жильцы соседнего дома платят намного меньше. Однако цифры не берутся из ниоткуда: существует норматив потребления тепловой энергии на отопление, и именно на его основании формируются итоговые суммы с учетом утвержденных тарифов. Как разобраться в этой непростой системе?

Откуда берутся нормативы?

Нормативы отопления жилых помещений, а также нормы на потребление какой-либо коммунальной услуги, будь то отопление, водоснабжение и т. д. – величина относительно постоянная. Они принимаются местным уполномоченным органом при участии ресурсоснабжающих организаций и остаются неизменными в течение трех лет.

Если говорить более просто, то компания, снабжающая теплом данный регион, подает в местные органы власти документы с обоснованием новых нормативов. В ходе обсуждения они принимаются или отвергаются на заседаниях городского совета. После этого выполняется перерасчет израсходованного тепла, и утверждаются тарифы, по которым будут платить потребители.

Нормативы потребления тепловой энергии на отопление высчитываются, исходя из климатических условий региона, типа дома, материала стен и крыши, износа коммунальных сетей и других показателей. В итоге получается количество энергии, которую приходится затратить на обогрев 1 квадрата жилой площади в данном здании. Это и есть норматив.

Общепринятой единицей измерения признана Гкал/кв. м – гигакалория на квадратный метр. Основной параметр – средняя температура окружающего воздуха в холодный период. Теоретически это означает, что если зима была теплой, то платить за отопление придется меньше. Однако на практике так обычно не получается.

Какой должна быть нормальная температура в квартире?

Нормативы по отоплению квартиры рассчитываются с учетом того, что в жилом помещении должна поддерживаться комфортная температура. Ее примерные значения:

  • В жилой комнате оптимальная температура составляет от 20 до 22 градусов;
  • Кухня – температура от 19 до 21 градуса;
  • Ванная комната — от 24 до 26 градусов;
  • Туалет – температура от 19 до 21 градуса;
  • Коридор – от 18 до 20 градусов.

Если в зимнее время в вашей квартире температура ниже указанных величин, значит, ваш дом получает меньше тепла, чем предписывают нормы на отопление. Как правило, в таких ситуациях виновны изношенные городские теплосети, когда драгоценная энергия впустую уходит в воздух. Тем не менее, норма отопления в квартире не выполняется, и вы имеете право жаловаться и требовать перерасчета.

Пояснения к калькулятору годового расхода тепловой энергии на отопление и вентиляцию.

Исходные данные для расчета:

  • Основные характеристики климата, где расположен дом:
    • Средняя температура наружного воздуха отопительного периода t o.п;
    • Продолжительность отопительного периода: это период года со средней суточной температурой наружного воздуха не более +8°C - z o.п.
  • Основная характеристика климата внутри дома: расчетная температура внутреннего воздуха t в.р, °С
  • Основная тепловая характеристики дома: удельный годовой расход тепловой энергии на отопление и вентиляцию, отнесенный к градусо-суткам отопительного периода, Вт·ч/(м2 °C сут).

Характеристики климата.

Параметры климата для расчета отопления в холодный период для разных городов России можно посмотреть здесь: (Карта климатологии) или в СП 131.13330.2012 «СНиП 23-01–99* “Строительная климатология”. Актуализированная редакция»
Например, параметры для расчета отопления для Москвы (Параметры Б ) такие:

  • Средняя температура наружного воздуха отопительного периода: -2,2 °C
  • Продолжительность отопительного периода: 205 сут. (для периода со средней суточной температурой наружного воздуха не более +8°C).

Температура внутреннего воздуха.

Расчетную температуру внутреннего воздуха вы можете установит свою, а можете взять из нормативов (смотрите таблицу на рисунке 2 или во вкладке Таблица 1).

В расчетах применяется величина D d - градусо-сутки отопительного периода (ГСОП), °С×сут. В России значение ГСОП численно равно произведению разности среднесуточной температуры наружного воздуха за отопительный период (ОП) t o.п и расчетной температуры внутреннего воздуха в здании t в.р на длительность ОП в сутках: D d = ( t o.п – t в.р) z o.п.

Удельный годовой расход тепловой энергии на отопление и вентиляцию

Нормированные величины.

Удельный расход тепловой энергии на отопление жилых и общественных зданий за отопительный период не должен превышает приведенных в таблице величин по СНиП 23-02-2003 . Данные можно взять из таблицы на картинке 3 или подсчитать на вкладке Таблица 2 (переработанный вариант из [Л.1]). По ней выберите для своего дома (площадь / этажность) значение удельного годового расхода и вставьте в калькулятор. Это характеристика тепловых качеств дома. Все строящиеся жилые дома для постоянного проживания должны отвечать этому требованию. Базовый и нормируемый по годам строительства удельный годовой расход тепловой энергии на отопление и вентиляцию основаны на проекте приказа Министерства Регионального развития РФ «Об утверждении требований энергетической эффективности зданий, строений, сооружений», где указаны требования к базовым характеристикам (проект от 2009 года), к характеристикам нормируемым с момента утверждения приказа (условно обозначил Н.2015) и с 2016 года (Н.2016).

Расчетная величина.

Эта величина удельного расхода тепловой энергии может быть указана в проекте дома, её можно подсчитать на основании проекта дома, можно оценить ее размер на основе реальных тепловых измерений или размеров потребленной за год энергии на отопление. Если эта величина указана в Вт·ч/м2, то её надо разделить на ГСОП в °C сут., получившуюся величину сравнить с нормированной для дома с подобной этажностью и площадью. Если она меньше нормированной, то дом удовлетворяет требованиям по теплозащите, если нет, то дом следует утеплить.

Свои цифры.

Значения исходных данных для расчета даны для примера. Вы можете вставить свои значения в поля на желтом фоне. В поля на розовом фоне вставляете справочные или расчетные данные.

О чем могут сказать результаты расчета.

Удельный годовой расход тепловой энергии, кВт·ч/м2 - можно использовать, чтобы оценить , необходимое количество топлива на год для отопления и вентиляции. По количеству топлива можно выбрать емкость резервуара (склада) для топлива, периодичность его пополнения.

Годовой расход тепловой энергии, кВт·ч - абсолютная величина потребляемой за год энергии на отопление и вентиляцию. Изменяя значения внутренней температуры можно увидеть, как изменяется эта величина, оценить экономию или перерасход энергии от изменения поддерживаемой внутри дома температуры, увидеть как влияет неточность термостата на потребление энергии. Особенно наглядно это будет выглядеть в пересчете на рубли.

Градусо-сутки отопительного периода, °С·сут. - характеризуют климатические условия внешние и внутренние. Поделив на это число удельный годовой расход тепловой энергии вкВт·ч/м2, вы получите нормированную характеристику тепловых свойств дома, отвязанную от климатических условий (это может помочь в выборе проекта дома, теплоизолирующих материалов).

О точности расчетов.

На территории Российской Федерации происходят определенные изменения климата. Исследование эволюции климата показало, что в настоящее время наблюдается период глобального потепления. Согласно оценочному докладу Росгидромета, климат России изменился сильнее (на 0,76 °C), чем климат Земли в целом, причем самые значительные изменения произошли на европейской территории нашей страны. На рис. 4 видно, что повышение температуры воздуха в Москве за период 1950–2010 годов происходило во все сезоны. Наиболее существенным оно было в холодный период (0,67 °C за 10 лет).[Л.2]

Основными характеристиками отопительного периода являются средняя температура отопительного сезона, °С, и продолжительность этого периода. Естественно, что ежегодно их реальное значение меняется и, поэтому, расчеты годового расхода тепловой энергии на отопление и вентиляцию домов являются лишь оценкой реального годового расхода тепловой энергии. Результаты этого расчета позволяют сравнить .

Приложение:

Литература:

  • 1. Уточнение таблиц базового и нормируемого по годам строительства показателей энергоэффективности жилых и общественных зданий
    В. И. Ливчак, канд. техн. наук, независимый эксперт
  • 2. Новый СП 131.13330.2012 «СНиП 23-01–99* “Строительная климатология”. Актуализированная редакция»
    Н. П. Умнякова, канд. техн. наук, заместитель директора по научной работе НИИСФ РААСН
Включайся в дискуссию
Читайте также
Женские архетипы. Афина. Развитие в себе архетипа афины Архетип афины
Психосоматика от а до я Психосоматика какие болезни вызывает обида
Льюис кэрролл самые краткие рассказы