Подпишись и читай
самые интересные
статьи первым!

Мембранные потенциалы. Диффузионные потенциалы клеток. Мембранный диффузионный потенциал Строение двойного электрического слоя

При создании любой электродной пары всегда используется «солевой мостик». Использование «солевого мостика» решает несколько задач, которые возникают перед исследователями электрохимических процессов. Одной из таких задач является увеличение точности определений, путем устранения или значительного уменьшения диффузионного потенциала. Диффузионный потенциал в гальванических элементах возникает при соприкосновении растворов разных концентраций. Электролит из раствора с большей концентрацией диффундирует (переходит) в менее концентрированный раствор. Если абсолютные скорости движения катионов и анионов диффундирующего электролита различны, то менее концентрированный раствор приобретает потенциал знака заряда «более быстрых ионов», а более концентрированный раствор приобретает потенциал противоположного знака. Чтобы устранить диффузионный потенциал, необходимо минимизировать различие в скоростях движения катионов и анионов диффундирующего электролита. Для этого был выбран насыщенный раствор KCl, т.к. абсолютные скорости движения K + и Cl¯ практически одинаковы и имеют одно из самых высоких значений.

Возникновение диффузионного потенциала характерно и для биологических систем. Например, при повреждении клетки, когда нарушается полупроницаемость ее мембраны, в клетку или из нее начинает диффундировать электролит. При этом возникает диффузионный потенциал, который здесь называется «потенциалом повреждения». Величина его может достигать 30 - 40 мВ, «потенциал повреждения» является устойчивым примерно втечение одного часа.

Значение диффузионного потенциала значительно возрастает, если растворы электролитов разных концентраций разделены мембраной, пропускающей только катионы или анионы. Избирательность таких мембран обусловлена их собственным зарядом. Мембранные потенциалы очень устойчивы и могут сохраняться в течение нескольких месяцев.

Потенциометрия

Виды электродов

Для аналитических и технических целей разработано много разных электродов, образующих электродные пары (элементы).

Существует два основных вида классификации электродов.

По химическому составу :

1. Электроды 1 рода – это электроды, электродная реакция которых, обратима только лишь по катиону или по аниону. Например, электроды, образующие элемент Якоби-Даниэля – медный и цинковый (см. выше).

2. Электроды 2 рода – это электроды, электродная реакция которых обратима для двух видов ионов: и катионов и анионов.

3. Окислительно-восстановительные электроды (Red – Ox) . Под термином «Red – Ox – электрод» понимают такой электрод, где все элементы полуреакции (и окисленная и восстановленная форма) находятся в растворе. Металлические же электроды, погруженные в раствор, в реакции не участвуют, а служат лишь переносчиком электронов.

По назначению :

1. Электроды сравнения .

Электроды сравнения – это такие электроды, потенциал которых точно известен, устойчив во времени и не зависит от концентрации ионов в растворе. К таким электродам можно отнести: стандартный водородный электрод, каломельный электрод и хлорсеребряный электрод. Рассмотрим каждый электрод подробнее.

Стандартный водородный электрод .

Этот электрод представляет собой закрытый сосуд, в который введена платиновая пластинка. Сосуд заполнен раствором соляной кислоты, активность ионов водорода в котором равна 1 моль/л. В сосуд под давлением 1 атмосфера пропускают газообразный водород. Пузырьки водорода адсорбируются на платиновой пластинке, где происходит их диссоциация на атомарный водород и окисление.

Характеристики стандартного водородного электрода:

1.Схема электрода: Pt(H 2) / H +

2.Электродная реакция: ½ Н 2 – ē ↔ Н +

Как легко видеть, данная реакция обратима только для катиона (Н +), поэтому стандартный водородный электрод – это электрод 1 рода.

3.Расчет электродного потенциала.

Уравнение Нернста принимает вид:

e Н 2 /Н+ = e ° Н 2 /Н + RT ln а н +

nF (Р н 2) 1/2

Т.к. а н+ =1 моль/л, р н+ = 1 атм, то ln а н+ = 0, поэтому

(Р н 2) 1/2

e Н 2 /Н+ = e ° Н 2 /Н+

Таким образом, при а н + =1 моль/л и р(н 2) = 1 атм потенциал водородного электрода равен нулю и называется «стандартным водородным потенциалом».

Другой пример – каломельный электрод (см. рисунок)

Он содержит пасту, включающую каломель (Hg 2 Сl 2), ртуть и хлорид калия. Паста находится на чистой ртути и залита раствором хлорида калия. Внутрь этой системы погружена платиновая пластинка.

Характеристики электрода:

1.Схема электрода: Hg 2 Cl 2 , Hg(Pt) / Cl¯

2.В этом электроде происходят две параллельных реакции:

Hg 2 Cl 2 ↔2Hg + +2Cl¯

2 Hg + + 2ē →2Hg

Hg 2 Cl 2 + 2ē → 2Hg +2Cl¯ - суммарная реакция.

Из приведенных уравнений видно, что каломельный электрод – это электрод 2 рода.

3.Потенциал электрода определяют по уравнению Нернста, которое после соответствующих преобразований принимает вид:

e = e o - RT ln a Cl¯

Еще один важный пример – хлорсеребряный электрод (см. рис).

Здесь серебряная проволока покрыта слоем трудно растворимой соли AgCl и погружена в насыщенный раствор хлорида калия.

Характеристики электрода:

1. Схема электрода: Ag, AgCl / Cl¯

2. Электродные реакции: AgCl ↔ Ag + + Cl¯

Ag + + ē → Ag

AgCl + ē ↔ Ag + Cl¯ -суммарная реакция.

Как видно из этой реакции, образующийся металл оседает на проволоке, а ионы Cl¯ переходят в раствор. Металлический электрод приобретает положительный заряд, потенциал которого зависит от концентрации (активности) ионов Cl¯ .

3.Потенциал электрода определяют по уравнению Нернста, которое после соответствующих преобразований принимает уже известный вид:

e = e o - RT ln a Cl¯

В хлорсеребряном и каломельных электродах концентрация ионов Cl¯ поддерживается постоянной и поэтому их электродные потенциалы являются известными и постоянными во времени.

2. Электроды определения – это такие электроды, потенциал которых зависит от концентрации каких-либо ионов в растворе, поэтому по величине электродного потенциала можно определить концентрацию этих ионов.

Наиболее часто в качестве индикаторных электродов используют: водородный, стеклянный и хингидронный электроды.

Водородный электрод устроен аналогично стандартному водородному электроду, но если в ёмкость водородного электрода поместить кислый раствор с активностью ионов Н + больше единицы, то на электроде возникает положительный потенциал, пропорциональный активности (т.е. концентрации) протонов. При уменьшении концентрации протонов, наоборот, электрод будет заряжаться отрицательно. Поэтому, определяя потенциал такого электрода, можно рассчитать рН раствора, в который он погружен.

Характеристики электрода.

1. Схема электрода: Pt(H 2) / H +

2. Электродная реакция: ½ Н 2 – ē ↔ Н +

3. e Н 2 /Н+ = e o Н 2 /Н + + 0.059 lg а н+

n

Т.к. n =1, а e o Н 2 / Н + = 0, то уравнение Нернста принимает вид:

e Н2/Н+ = 0,059 lg а н+ = - 0,059 рН рН = - е

0,059

Стеклянный электрод представляет собой серебряную пластинку, покрытую нерастворимой солью серебра, заключенную в стеклянную оболочку из специального стекла, заканчивающимся тонкостенным токопроводящим шариком. Внутренней средой электрода является раствор соляной кислоты. Потенциал электрода зависит от концентрации Н + и определяется по уравнению Нернста, имеющего вид:

e ст = e о ст + 0.059 lg а н+

Хингидронный электрод состоит из платиновой пластинки, погруженной в раствор хингидрона – равномолярной смеси хинона С 6 Н 4 О 2 и гидрохинона С 6 Н 4 (ОН) 2 , между которыми быстро устанавливается динамическое равновесие:

Так как в данной реакции участвуют протоны, потенциал электрода зависит от рН.

Характеристики электрода:

1. Схема электрода: Pt / H + , С 6 Н 4 О 2 , С 6 Н 4 О 2-

2. Электродная реакция:

С 6 Н 4 (ОН) 2 - 2ē ↔ С 6 Н 4 О 2 + 2Н + -

окислительно-восстановительный процесс.

3. Потенциал электрода определяют по уравнению Нернста, которое после соответствующих преобразований принимает вид:

е х. г. = е о х. г. + 0,059 lg a H +

Хингидронный электрод используется только для определения рН тех растворов, где этот показатель не больше 8. Это связано с тем, что в щелочной среде гидрохинон ведет себя как кислота и величина электродного потенциала перестает зависеть от концентрации протонов.

Т.к. в хингидронном электроде пластинка из благородного металла погружена в раствор, содержащий и окисленную и восстановленную форму одного вещества, то его можно рассматривать как типичную «red – ox» - систему.

Компонентами окислительно – восстановительной системы могут быть как органические, так и неорганические вещества, например:

Fe 3+ / Fe 2+ (Pt).

Однако, для органических веществ, «red – ox» - электроды особенно важны, т.к. являются единственным способом образовать электрод и определить его потенциал.

Величины электродных потенциалов, возникающих на металлических пластинках в red – ox – системах, можно рассчитывать не только по уравнению Нернста, но и по уравнению Петерса:

2 * 10 -4 C ox

e red-ox = e 0 red-ox + * T * lg ; (В)

T – температура, 0 К.

C ox и C red – концентрации окисленной и восстановленной форм вещества, соответственно.

e 0 red - ox – стандартный окислительно-восстановительный потенциал, который возникает в системе при соотношении концентраций окисленной и восстановленной форм соединения равном 1.

Напряжение электрохимической системы с жидкостной границей между двумя электролитами определяется разностью электродных потенциалов с точностью до диффузионного потенциала.

Рис. 6.12. Устранение диффузионного потенциала с помощью электролитических мостиков

Вообще говоря, диффузионные потенциалы на границе двух электролитов могут быть довольно значительными и, во всяком случае, часто делают результаты измерений неопределенными. Ниже приведены значения диффузионных потенциалов для некоторых систем (в скобках указана концентрация электролита в кмоль/м 3):

В связи с этим диффузионный потенциал должен быть либо элиминирован, либо точно измерен. Элиминирование диффузионного потенциала достигается включением в электрохимическую систему дополнительного электролита с близкими значениями подвижностей катиона и аниона. При измерениях в водных растворах в качестве такого электролита применяют насыщенные растворы хлорида калия, нитрата калия или аммония.

Дополнительный электролит включают между основными электролитами с помощью электролитических мостиков (рис. 6.12), заполненных основными электролитами. Тогда диффузионный потенциал между основными электролитами, например в случае, изображенном на рис. 6.12, - между растворами серной кислоты и сульфата меди, заменяется диффузионными потенциалами на границах серная кислота - хлорид калия и хлорид калия - сульфат меди. При этом на границах с хлоридом калия электричество в основном переносится ионами К + и С1 – , которых много больше, чем ионов основного электролита. Поскольку подвижности ионов К + и С1 – в хлориде калия практически равны друг другу, то и диффузионный потенциал будет невелик. Если концентрации основных электролитов малы, то с помощью дополнительных электролитов диффузионный потенциал снижается обычно до значений, не превышающих 1 – 2 мВ. Так, в опытах Аббега и Кумминга установлено, что диффузионный потенциал на границе 1 кмоль/м 3 LiCl - 0,1 кмоль/м 3 LiCl равен 16,9 мВ. Если же между растворами хлорида лития включены дополнительные электролиты, то диффузионный потенциал снижается до следующих значений:

Дополнительный электролит Диффузионный потенциал системы, мВ

NH 4 NO 3 (1 кмоль/м 3) 5,0

NH 4 NO 3 (5 кмоль/м 3) –0,2

NH 4 NO 3 (10 кмоль/м 3) –0,7

KNO 3 (насыщ.) 2,8

KCl (насыщ.) 1,5

Элиминирование диффузионных потенциалов методом включения дополнительного электролита с равными числами переноса ионов дает хорошие результаты при измерениях диффузионных потенциалов в неконцентрированных растворах с мало отличающимися подвижностями аниона и катиона. При измерениях же напряжений систем, содержащих растворы кислот или щелочей

Таблица 6.3. Диффузионные потенциалы на границе КОН – КСl и NaOH – KCl (по данным В. Г. Локштанова)

с очень различными скоростями движения катиона и аниона, следует быть особенно осторожными. Например, на границе НС1 - КС1 (насыщ.) диффузионный потенциал не превышает 1 мВ, только если концентрация раствора НС1 ниже 0,1 кмоль/м 3 . В противном случае диффузионный потенциал быстро увеличивается. Аналогичное явление наблюдается и для щелочей (табл. 6.3). Так, диффузионный потенциал, например в системе

(–) (Pt) H 2 | KOH | KOH | H 2 (Pt) (+)

4,2 кмоль/м 3 20,4 кмоль/м 3

составляет 99 мВ, и в данном случае с помощью солевого мостика нельзя добиться значительного его снижения.

Для снижения диффузионных потенциалов до пренебрежимо малых значений Нернст предложил добавлять в контактирующие растворы большой избыток какого-нибудь индифферентного для данной системы электролита. Тогда диффузия основных электролитов уже не будет приводить к возникновению существенного градиента активности на границе раздела, а следовательно, и диффузионного потенциала. К сожалению, добавка индифферентного электролита изменяет активность ионов, участвующих в по-тенциалопределяющей реакции, и приводит к искажению результатов. Поэтому этим методом можно пользоваться только в тех

случаях, когда добавка индифферентного электролита не может повлиять на изменение активности или это изменение может быть учтено. Например, при измерении напряжения системы Zn | ZnSO 4 | CuSO 4 | Cu, в которой концентрации сульфатов не ниже 1,0 кмоль/м 3 , добавка сульфата магния для снижения диффузионного потенциала вполне допустима, ибо при этом средние ионные коэффициенты активности сульфатов цинка и меди практически не изменятся.

Если при измерении напряжения электрохимической системы диффузионные потенциалы не элиминируются или должны быть измерены, то прежде всего следует позаботиться о создании устойчивой границы соприкосновения двух растворов. Непрерывно обновляющуюся границу создают путем медленного направленного движения растворов параллельно друг другу. Таким образом можно добиться стабильности диффузионного потенциала и его воспроизводимости с точностью до 0,1 мВ.

Диффузионный потенциал определяют по методу Коэна и Том-брока из измерений напряжений двух электрохимических систем, причем электроды одной из них обратимы к катиону соли, а другой - к аниону. Допустим, нужно определить диффузионный потенциал на границе ZnSO 4 (a 1)/ZnSO 4 (a 2). Для этого измеряем напряжения следующих электрохимических систем (примем, что а 1 < < а 2):

1. (–) Zn | ZnSO 4 | ZnSO 4 | Zn (+)

2. (–) Hg | Hg 2 SO 4 (тв.), ZnSO 4 | ZnSO 4 , Hg 2 SO 4 (тв.) | Hg (+)

Напряжение системы 1

системы 2

Учитывая, что φ д 21 = – φ д 12 , и вычитая второе уравнение из первого, получаем:

Когда измерения проводят при не очень высоких концентрациях, при которых еще можно считать, что = и = или что : = : два последних члена последнего уравнения сокращаются и

Диффузионный потенциал в системе 1 можно определить также несколько иным способом, если вместо системы 2 воспользоваться сдвоенной электрохимической системой:

3. (–) Zn | ZnSO 4 , Hg 2 SO 4 (тв.) | Hg - Hg | Hg 2 SO 4 (тв.), ZnSO 4 | Zn (+)

Напряжение системы З

Следовательно, разность напряжений систем 1 и 3 выразится уравнением:

Если, как и раньше, отношение активностей ионов цинка заменить отношением средних ионных активностей соли цинка, по- лучим:

Поскольку последний член этого уравнения обычно поддается точному расчету, из измерений Е р1 и E p 3 можно определить значение диффузионного потенциала.

Аналогичным образом определяют диффузионный потенциал на границе двух разных растворов. Например, если хотят определить диффузионный потенциал на границе растворов сульфата цинка и хлорида меди, составляют две электрохимические си-стемы:

4. (–) Zn | ZnSO 4 | CuCl 2 | Cu (+)

5. (–) Hg | Hg 2 Cl 2 (тв.), CuCl 2 | ZnSO 4 , Hg 2 SO 4 (тв.) | Hg (+)

Напряжение системы 4

системы 5

Следовательно

Естественно, что чем большее число членов входит в уравнение для диффузионного потенциала, тем меньше вероятность большой точности определения.


Похожая информация.


Диффузионные потенциалы возникают на границе соприкосновения двух растворов. Причем это могут быть как растворы разных веществ, так и растворы одного и того же вещества, только в последнем случае они обязательно должны отличаться друг от друга своими концентрациями.

При соприкосновении двух растворов происходит взаимопроникновение в них частиц (ионов) растворенных веществ вследствие процесса диффузии.

Причина возникновения при этом диффузионного потенциала заключается в неодинаковой подвижности ионов растворенных веществ. Если ионы электролита обладают разной скоростью диффузии, то более быстрые ионы постепенно оказываются впереди менее подвижных. Образуются как бы две волны разнозаряженных частиц.

Если смешиваются растворы одного и того же вещества, но с разной концентрацией, то более разбавленный раствор приобретает заряд, совпадающий по знаку с зарядом более подвижных ионов, а менее разбавленный – заряд, совпадающий по знаку с зарядом менее подвижных ионов (рис. 90).

Рис. 90. Возникновение диффузионного потенциала вcледствие разной скорости ионов:I – «быстрые» ноны, заряженные отрицательно;II – «медленные» ионы, заряженные положительно

На границе раздела растворов возникает так называемый диффузионный потенциал. Он усредняет скорости движения ионов (тормозит более «быстрые» и ускоряет более «медленные»).

Постепенно, с завершением процесса диффузии данный потенциал снижается до нуля (обычно в течение 1-2 часов).

Диффузионные потенциалы могут возникать и в биологических объектах при повреждении оболочек клеток. При этом нарушается их проницаемость и электролиты могут диффундировать из клетки в тканевую жидкость или наоборот в зависимости от разности концентрации по обе стороны мембраны.

В результате диффузии электролитов возникает так называемый потенциал повреждения, который может достигать величин порядка 30-40 мV. Причем поврежденная ткань чаще всего заряжается отрицательно по отношению к неповрежденной.

Диффузионный потенциал возникает в гальванических элементах на границе соприкосновения двух растворов. Поэтому при точных вычислениях э.д.с. гальванических цепей обязательно должна вводиться поправка на его величину. Для устранения влияния диффузионного потенциала электроды в гальванических элементах часто соединяют друг с другом «солевым мостиком», представляющим собой насыщенный раствор KCl .

Ионы калия и хлора имеют почти одинаковые подвижности, поэтому их применение позволяет в значительной степени уменьшить влияние диффузионного потенциала на величину э.д.с.

Диффузионный потенциал может сильно возрасти, если растворы электролитов разного состава или разных концентраций разделить мембраной, проницаемой только для ионов определенного знака заряда или вида. Такие потенциалы будут гораздо более стойкими и могут сохраняться в течение более длительного времени – они называются иначе мембранными потенциалами . Мембранные потенциалы возникают при неравномерном распределении ионов по обе стороны мембраны, зависящем от её избирательной проницаемости, или в результате обмена ионами между самой мембраной и раствором.

На возникновении мембранного потенциала основан принцип работы так называемого ион-селективного илимембранного электрода.

Основой такого электрода является определенным образом полученная полупроницаемая мембрана, обладающая селективной ионной проводимостью. Особенностью мембранного потенциала является то, что в соответствующей ему электродной реакции не участвуют электроны. Здесь имеет место обмен ионами между мембраной и раствором.

Мембранные электроды с твердой мембраной содержат тонкую мембрану, по обе стороны которой находятся разные растворы, содержащие одни и те же определяемые ионы, но с неодинаковой концентрацией. С внутренней стороны мембрану омывает стандартный раствор с точно известной концентрацией определяемых ионов, с внешней стороны – анализируемый раствор с неизвестной концентрацией определяемых ионов.

Вследствие различной концентрации растворов по обе стороны мембраны ионы обмениваются с внутренней и внешней сторонами мембраны неодинаковым образом. Это приводит к тому, что на разных сторонах мембраны образуется разный электрический заряд и как результат этого, возникает мембранная разность потенциалов.

Среди ионо-селективных электродов большое распространение получил стеклянный электрод, который применяют для определения рН растворов.

Центральной частью стеклянного электрода (рис. 91) является шарик, изготовленный из специального токопроводящего гидратированного стекла. Он заполнен водным раствором HClс известной концентрацией (0,1 моль/дм 3). В этот раствор помещают электрод второго рода – чаще всего хлорсеребряный, выступающий в роли электрода сравнения. При измерениях стеклянный шарик опускают в анализируемый раствор, в котором находится второй электрод сравнения.

Принцип действия электрода основан на том, что в структуре стекла ионы K + ,Na + ,Li + заменены на ионы Н + путем его длительного вымачивания в растворе кислоты. Таким образом стеклянная мембрана может обмениваться своими ионами Н + с внутренним и внешним растворами (рис. 92). Причем по обе стороны мембраны вследствие этого процесса возникают различные потенциалы.

Рис. 91. Схема стеклянного электрода: 1 – стеклянный шарик (мембрана); 2 – внутренний раствор НС1; 3 – хлорсеребряный электрод; 4 – измеряемый раствор; 5 – металлический проводник

Рис. 92. Стеклянный электрод в растворе с неизвестной концентрацией ионов Н + (а) и схема обмена ионов между двумя фазами (б)

С помощью электродов сравнения, помещенных во внешний и внутренний растворы, измеряют их разность.

Потенциал на внутренней стороне мембраны постоянен, поэтому разность потенциалов стеклянного электрода будет зависеть только от активности ионов водорода в исследуемом растворе.

Общая схема цепи, включающая стеклянный электрод и два электрода сравнения, представлена на рис. 93.

Рис. 93. Схема цепи, поясняющая принцип работы стеклянного электрода

Стеклянный электрод имеет ряд существенных преимуществ по сравнению с водородным электродом, с помощью которого тоже можно измерять концентрацию ионов Н + в растворе.

Он совершенно не чувствителен к различным примесям в растворе, «не отравляется ими», им можно пользоваться, если в анализируемых жидкостях содержатся сильные окислители и восстановители, а также в самом широком диапазоне значений рН – от 0 до 12. Недостатком стеклянного электрода является его большая хрупкость.

Практически измеренное точное значение ЭДС обычно отличается от теоретически рассчитанного по уравнению Нернста на некоторую малую величину, которая связана с разностями потенциалов, возникающими в месте контакта различных металлов (“контактный потенциал”) и различных растворов (“диффузионный потенциал”).

Контактный потенциал (точнее, контактная разность потенциалов) связан с различным значением работы выхода электрона для каждого металла. При каждой данной температуре он является постоянным для данного сочетания металлических проводников гальванического элемента и входит в ЭДС элемента как постоянное слагаемое.

Диффузионный потенциал возникает на границе между растворами различных электролитов или одинаковых электролитов с различной концентрацией. Его возникновение объясняется различной скоростью диффузии ионов из одного раствора в другой. Диффузия ионов обусловлена различным значением химического потенциала ионов в каждом из полуэлементов. Причем её скорость изменяется во времени из-за непрерывного изменения концентрации, а значит, и m . Поэтому диффузионный потенциал имеет, как правило, неопределённое значение, так как на него влияют многие факторы, в том числе и температура.

При обычных практических работах значение контактного потенциала сводят к минимуму применением монтажа проводниками, изготовленными из одного и того же материала (обычно меди), а диффузионного потенциала - использованием специальных устройств, называемых электролитическими (солевыми )мостиками или электролитическими ключами. Они представляют собой трубки различной конфигурации (иногда снабженные кранами), заполненные концентрированными растворами нейтральных солей. У этих солей подвижности катиона и аниона должны быть приблизительно равны друг другу (Например, KCl, NH 4 NO 3 и т. п.). В простейшем случае электролитический мостик может быть изготовлен из полоски фильтровальной бумаги или асбестового жгутика, смоченных раствором KCl. При использовании электролитов на основе неводных растворителей в качестве нейтральной соли обычно применяется хлорид рубидия.

Достигнутыми в результате принятых мер минимальными значениями контактного и диффузного потенциалов обычно пренебрегают. Однако при электрохимических измерениях, требующих большой точности, контактный и диффузионный потенциалы следует учитывать.

То обстоятельство, что в данном гальваническом элементе имеется электролитический мостик, отображается двойной вертикальной чертой в его формуле, стоящей в месте контакта двух электролитов. Если же электролитический мостик отсутствует, то в формуле ставится одиночная черта.


В ячейках с переносом контактируют между собой растворы полуячеек различного качественного и количественного состава. Подвижности (коэффициенты диффузии) ионов, их концентрации и природа в полуячейках в общем случае различаются. Более быстрый ион заряжает слой по одну сторону воображаемой границы слоев своим знаком, оставляя по другую сторону слой, заряженный противоположно. Электростатическое притяжение не дает процессу диффузии отдельных ионов развиваться далее. Происходит разделение положительных и отрицательных зарядов на атомном расстоянии, что по законам электростатики приводит к возникновению скачка электрического потенциала, называемого в данном случае диффузионным потенциалом Дф и (синонимы - жидкостной потенциал, потенциал жидкостного соединения, контакта). Однако, диффузия- миграция электролита в целом продолжается при определенном градиенте сил, химических и электрических.

Как известно, диффузия - существенно неравновесный процесс. Диффузионный потенциал - неравновесная составляющая ЭДС (в отличие от электродных потенциалов). Он зависит от физико-химических характеристик отдельных ионов и даже от устройства контакта между растворами: пористая диафрагма, тампон, шлиф, свободная диффузия, асбестовая или шелковая нить, и т. д. Его величина не может быть точно измерена, а оценивается экспериментально и теоретически с той или иной степенью приближения.

Для теоретической оценки Дф 0 используются различные подходы Доп4В. В одном из них, называемом квази-термодина- мическим, электрохимический процесс в ячейке с переносом в целом считается обратимым, а диффузия - стационарной. Принимается, что на границе растворов создается некоторый переходный слой, состав которого изменяется непрерывно от раствора (1) до раствора (2). Этот слой мысленно разбивается на тонкие подслои, состав которых, т. е. концентрации, а с ними и химические и электрические потенциалы, изменяются на бесконечно малую величину по сравнению с соседним подслоем:

Те же соотношения сохраняются между последующими подслоями, и так до раствора (2). Стационарность заключается в неизменности картины во времени.

В условиях измерения ЭДС происходит диффузионный перенос зарядов и ионов между подслоями, т. е. совершаются электрическая и химическая работа, разделимые только мысленно, как при выводе уравнения электрохимического потенциала (1.6). Систему считаем бесконечно большой, и рассчитываем на 1 экв. вещества и 1 Фарадей заряда, переносимым каждым видом участвующих ионов:

Справа минус, потому что работа диффузии производится в направлении убыли силы - градиента химического потенциала; t; - число переноса, т. е. доля заряда, переносимого данным /-м видом ионов.

Для всех ионов-участников и для всей суммы подслоев, составляющих переходный слой от раствора (1) до раствора (2), имеем:

Заметим слева определение диффузионного потенциала как интегральной величины потенциала, непрерывно меняющегося по составу переходного слоя между растворами. Подставляя |1, = |ф +/?Г1пй, и учитывая, что (I, =const при р,Т= const, получим:

Искомая связь между диффузионным потенциалом и характеристиками ионов, такими как числа переноса, заряд и активности отдельных ионов. Последние, как известно, термодинамически не определимы, что затрудняет расчет A(p D , требуя нетермодинамических допущений. Интегрирование правой части уравнения (4.12) производится при различных предположениях о строении границы между растворами.

М. Планк (1890) считал границу резкой, слой тонким. Интегрирование при этих условиях привело к получению уравнения Планка для Дф 0 , оказавшимся трансцендентным относительно этой величины. Его решение находят итерационным методом.

Гендерсон (1907) вывел свое уравнение для Дф 0 , исходя из предположения, что между контактирующими растворами создается переходный слой толщиной d, состав которого изменяется линейно от раствора (1) до раствора (2), т. е.

Здесь С; - концентрация иона, х - координата внутри слоя. При интегрировании правой части выражения (4.12) приняты допущения:

  • активности ионов а, заменены на концентрации С, (Гендерсон и не знал активностей!);
  • числа переноса (подвижности ионов) приняты независящими от концентрации и постоянными в пределах слоя.

Тогда получается общее уравнение Гендерсона:


Zj, С„ «, - заряд, концентрация и электролитическая подвижность иона в растворах (1) и (2); знаки + и _ вверху относятся к катионам и анионам соответственно.

В выражении для диффузионного потенциала отражаются различия характеристик ионов по разные стороны границы, т. е. в растворе (1) и в растворе (2). Для оценки Дф 0 чаще всего используется именно уравнение Гендерсона, которое в типичных частных случаях ячеек с переносом упрощается. При этом используются различные характеристики подвижности ионов, связанные с и, - ионные электропроводности, числа переноса (Таблица 2.2), т. е. величины, доступные из справочных таблиц.

Формула Гендерсона (4.13) может быть записана несколько компактнее, если использовать ионные электропроводности:


(здесь обозначения растворов 1 и 2 заменены на " и " соответственно).

Следствием общих выражений (4.13) и (4.14) являются некоторые частные, приводимые ниже. Следует иметь в виду, что использование концентраций вместо ионных активностей и характеристик подвижности (электропроводности) ионов при бесконечном разбавлении делает эти формулы весьма приближенными (но тем более точными, чем более разбавлены растворы). При более строгом выводе учитываются зависимости характеристик подвижности и чисел переноса от концентрации, а вместо концентраций стоят активности ионов, которые с определенной степенью приближения можно заменить средними активностями электролита.

Частные случаи:

Для границы двух растворов одинаковой концентрации разных электролитов с общим ионом типа АХ и ВХ, или АХ и AY:

(формулы Льюиса - Сержента), где - предельные молярные электропроводности соответствующих ионов, А 0 - предельная молярная электропроводность соответствующих электролитов. Для электролитов типа АХ 2 и ВХ 2

С и С" одного и того же электролита типа 1:1

где V) и А.® - предельные молярные электропроводности катионов и анионов, t и г + - числа переноса аниона и катиона электролита.

Для границы двух растворов разной концентрации С" и С" одного и того же электролита с зарядами катионов z+, анионов z~, числами переноса t + и t_ соответственно

Для электролита типа М„+А г _, принимая во внимание условие электронейтральности v + z + = -v_z_ и стехиометрическое соотношение C + = v + C и C_ = v_C, можно упростить это выражение:

В приведенных выражениях для диффузионного потенциала отражаются различия подвижности (чисел переноса) и концентрации катионов и анионов по разные стороны границы растворов. Чем меньше эти различия, тем меньше величина Дф 0 . Это видно и из Табл. 4.1. Самые высокие значения Дфи (десятки мВ) получились для растворов кислоты и щелочей, содержащих ионы Н f и ОН“, обладающие уникально высокой подвижностью. Чем меньше различие подвижностей, т. е. чем ближе к 0.5 значение t + и тем меньше Дф ц. Это наблюдается для электролитов 6-10, которые называются «равнопроводя- щими» или «равнопереносягцими».

Для расчетов Дф 0 использованы предельные значения электропроводностей (и чисел переноса), но реальные значения концентраций. Это вносит определенную ошибку, которая для 1 - 1 электролитов (№№ 1 - 11) составляет от 0 до ±3%, тогда как для электролитов, содержащих ионы с зарядом |г,|>2 ошибка должна быть больше, ибо электропроводность изменяется с изменением ионной силы которую

наибольший вклад вносят именно многозарядные ионы.

Значения Дф 0 на границах растворов разных электролитов с одним и тем же анионом и одинаковыми концентрациями приведены в Табл. 4.2.

Заключения о диффузионных потенциалах, сделанные ранее для растворов одинаковых электролитов разных концентраций (Табл. 4.1), подтверждаются и в случае разных электролитов одинаковой концентрации (колонки 1-3 Табл. 4.2). Диффузионные потенциалы оказываются наибольшими, если по разные стороны границы находятся электролиты, содержащие ионы Н + или ОН". Они достаточно велики для электролитов, содержащих ионы, числа переноса которых в данном растворе далеки от 0.5.

Рассчитанные значения Афр неплохо совпадают с измеренными, особенно если учесть как приближения, использованные при выводе и применении уравнений (4.14а) и (4.14в), так и экспериментальные трудности (погрешности) при создании границы жидкостей.

Таблица 41

Предельные ионные электропроводности и электропроводности водных растворов электролитов, числа переноса и диффузионные потенциалы,

рассчитанные по формулам (414г- 414е) при для 25 °С

Электролит

Cm cm моль

См? cm 2 моль

См см 2 моль

Аф с,

NH 4CI

NH 4NO 3

CH 3COOU

У 2 СаС1 2

1/2 NcbSCX}

l/3LaCl 3

1/2 CuS0 4

l/2ZnS0 4

На практике чаще всего вместо количественной оценки величины Афр прибегают к его элиминированию, т. е. доведению его величины до минимума (до нескольких милливольт) включением между контактирующими растворами электролитического мостика («ключа»), заполненного концентрированным раствором так называемого равнопроводящего электролита, т. е.

электролита, катионы и анионы которого обладают близкими подвижностями и, соответственно, ~ / + ~ 0.5 (№№ 6-10 в Табл. 4.1). Ионы такого электролита, взятые в большой концентрации по отношению к электролитам в ячейке (в концентрации, близкой к насыщению), берут на себя роль основных переносчиков заряда через границу растворов. Вследствие близости подвижностей этих ионов и их преобладающей концентрации Дфо -> 0 мВ. Сказанное иллюстрируется колонками 4 и 5 Табл. 4.2. Диффузионные потенциалы на границах растворов NaCl и KCI с концентрированными растворами КС1 действительно близки к 0. В то же время на границах концентрированных растворов КС1 даже с разбавленными растворами кислоты и щелочи Д(р в не равен 0 и увеличивается с увеличением концентрации последних.

Таблица 4.2

Диффузионные потенциалы на границах растворов разных электролитов, рассчитанные но формуле (4.14а) при 25 °С

Жидкостное

соединение" 1

эксп. 6 ’,

Жидкостное соединение а),г>

нс1 о.1 :kci од

HCI 1.0||KCl Sa ,

НС1 0.1ЦКС1 Sat

НС1 0.01ЦКС1&,

НС10.1:NaCl 0.1

NaCl 1,0|| KCI 3,5

HCI 0.01 iNaCl 0.01

NaCl 0.11| KCI 3,5

HCI 0.01 ILiCl 0.01

KCI 0.1 iNaCl 0.1

KCI 0.1ЦКС1 Sat

KCI 0.01 iNaCl 0.01

KCI 0.01 iLiCl 0.01

NaOH 0.1ЦКС1 Sal

Kci o.oi :nh 4 ci o.oi

NaOH 1.0ЦКС1 Sat

LiCl 0.01:nh 4 ci 0.01

NaOH 1.0ЦКС1 3,5

LiCl 0.01 iNaCl 0.01

NaOH 0.1ЦКС1 0.1

Примечания:

Концентрации в моль/л.

61 Измерения ЭДС ячеек с переносом и без переноса; расчет с учетом средних коэффициентов активности; см. далее.

Расчет по уравнению Льюиса - Сержента (4Л4а).

" KCl Sal - это насыщенный раствор КС1 (~4.16 моль/л).

"Расчет по уравнению Гендерсона типа (4.13), но с использованием средних активностей вместо концентраций.

Диффузионные потенциалы с каждой стороны мостика имеют противоположные знаки, что способствует элиминированию суммарного Дф 0 , который в этом случае называют остаточным (residual) диффузионным потенциалом ДДф и res .

Границу жидкостей, на которой Дф р элиминирован включением электролитического мостика, принято обозначать (||), как это сделано в Табл. 4.2.

Дополнение 4В.

Включайся в дискуссию
Читайте также
Ядро клетки человека: строение, функции и происхождение
Кластерный подход в профессиональном образовании
Этнический состав РФ Российской Федерации